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Abstract— It is known that autonomous vehicles are capable
of maintaining shorter headways and distances when they
form platoons of vehicles. Thus, deployment of autonomous
vehicles can result in roadway flow capacity increases in traffic
networks. Consequently, it is envisioned that their deployment
will boost the overall capacity of the network. In this paper, we
consider a nonatomic routing game on a traffic network with
inelastic (fixed) demands for the set of network O/D pairs, and
study how replacing a fraction of regular (i.e. nonautonomous)
vehicles by autonomous vehicles will affect the network total
delay, under the assumption that the vehicles choose their
routes selfishly. Using well known US bureau of public roads
(BPR) traffic delay models, we show that the resulting Wardrop
equilibrium is not necessarily unique even in its weak sense for
networks with mixed autonomy. We derive the conditions under
which the total network delay is guaranteed to not increase as a
result of increasing the ratio of autonomous vehicles. However,
we also show that when these conditions do not hold, counter
intuitive behaviors might occur: the total delay can grow by
increasing the fraction of autonomous vehicles in the network.
In particular, we prove that for networks with a single O/D pair,
if the road degree of capacity asymmetry (i.e. the ratio between
the road capacity when all vehicles are regular and the road
capacity when all vehicles are autonomous) is homogeneous,
the total network delay is 1) unique, and 2) a nonincreasing
continuous function of network autonomy fraction. We show
that for heterogeneous degrees of capacity asymmetry, the total
delay is not unique, and it can further grow when the fraction
of autonomous vehicles increases. We demonstrate that similar
behaviors may be observed in networks with multiple O/D pairs.

I. INTRODUCTION

Autonomous vehicles technology has attracted significant
attention as a result of its potentials for increasing safety,
sustainability, and enhancing mobility. It has been shown
in multiple works that autonomous vehicles can stabilize
traffic flow and damp congestion shockwaves [1], [2], [3].
Moreover, there has been a recent focus on how to utilize
vehicle autonomy and connectedness to remove signal lights
from intersections and coordinate conflicting movements in
order to maximize network throughput [4], [5], [6].

Additionally, autonomous vehicles can facilitate vehicle
platooning. Vehicle platoons are groups of more than one
vehicle, capable of maintaining shorter headways; as a result,
platooning can lead to increases in the capacities of network
links [7]. Such increases can be up to three–fold if all the
vehicles are autonomous [7]. Before achieving full vehicle
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automation, transportation networks will go through a tran-
sient era, when both regular and autonomous vehicles coexist
in the roadway. Therefore, it is crucial to study networks with
mixed autonomy. In [8], the performance of networks with
mixed autonomy was studied via simulations. In [1], deep
reinforcement learning was utilized to predict the emergent
behavior of traffic networks with mixed–autonomy. In [9],
the capacities of the network links were modeled in a mixed–
autonomy traffic network. Using affine delay functions, this
model was used in [10] to compute the price of anarchy of
traffic networks with mixed autonomy.

In this paper, we study how the introduction of au-
tonomous vehicles in traffic networks will affect the equi-
librium state of the network as compared to the case when
all vehicles are regular (i.e. nonautonomous). In particular,
given a fixed demand of vehicles, we study how replacing
a fraction of vehicles with autonomous vehicles will affect
the equilibrium assuming that all vehicles choose their routes
in a selfish manner. This is of paramount importance since
we need to predict how selfish behavior of the drivers in
networks with mixed autonomy would change the behavior
of the system. To this end, we model the selfish route
choice behavior of vehicles as a nonatomic routing game [11]
where vehicles choose their routes selfishly until a Wardrop
equilibrium is achieved [12]. We model the network by a
directed graph. We represent the delay along each network
link, via commonly used BPR functions. We consider two
classes of vehicles, regular and autonomous. For a given
fixed demand profile, we study how increasing the autonomy
fraction will affect the network at equilibrium.

We first show that the equilibrium may not be unique even
in the weak sense of total link utilization. Then, we study
networks with a single O/D pair and prove that if the degree
of road capacity asymmetry is homogeneous throughout the
network, the social or total delay of the network is a unique
function of fraction of autonomous vehicles, which will be
referred to as autonomy fraction throughout this paper. Fur-
ther, the social delay is a continuous function and monotone
nonincreasing in autonomy fraction. However, in networks
with heterogeneous degrees of road asymmetry, we first show
that the social delay is not unique. Then, we demonstrate that,
surprisingly, increasing the autonomy fraction of the network
may lead to an increase in the social delay. For networks with
multiple O/D pairs, we show that similar complex behaviors
may occur, namely increasing the autonomy fraction of a
single O/D pair might worsen the total or social delay of
the network. Our work in fact shows that traffic paradoxes
similar to the well known Braess’ Paradox [13] can occur



in traffic networks with mixed vehicle autonomy due to the
capacity increases provided by autonomous vehicles.

The organization of this paper is as follows. In Section II,
we describe our notation and model. In Section III, we
review some known results from routing games that we
will further use. We discuss uniqueness of equilibrium in
Section IV. Then, we analyze networks with a single O/D
pair in Section V. In Section VI, we show the complexities
caused by the presence of multiple O/D pairs. We conclude
the paper and provide future directions in Section VII.

II. NONATOMIC SELFISH ROUTING

We model a traffic network by a directed graph
G = (N,L,W ), where N and L are respectively the
set of nodes and links in the network. Define W =
{(o1, d1), (o2, d2), · · · , (ok, dk)} to be the set of origin–
destination (O/D) pairs of the network. We assume that each
link l ∈ L joins two distinct nodes; thus, no self loops are
allowed. A node n ∈ N can appear in multiple O/D pairs.
In a nonatomic selfish routing game with inelastic demands,
each O/D pair has a fixed given nonzero demand and chooses
some subset of paths from the set of possible paths from its
origin to its destination to route its flow. Each O/D pair can
decide on how much flow to send through each path such that
the O/D pair minimizes its own delay. The delay of each path
depends on how network links are shared among different
O/D pairs. For each O/D pair w = (oi, di), 1 ≤ i ≤ K,
we let Pw denote the set of all possible network paths from
oi to di. We assume that the network topology is such that
for each O/D pair w ∈ W , there exists at least one path
from its origin to its destination, i.e. Pw 6= ∅. We further let
P = ∪w∈WPw denote the set of all network paths.

For each O/D pair w ∈ W , and path p ∈ Pw, let fp be
the flow of O/D pair w along path p. For each O/D pair
w, let rw be the given fixed demand of vehicles associated
with w. Note that each path connects exactly one origin
to one and only one destination; thereby, once a path is
fixed, its origin and destination are uniquely determined.
Consequently, there is no need to explicitly include path O/D
pairs in the notation that is used for fp. It is important to note
that in our setting, each w ∈W has two classes of vehicles:
regular and autonomous. Aligned with this, for each w ∈W ,
define the autonomy fraction αw to be the fraction of vehicles
in rw that are autonomous. Let r and α be the vectors of
network demand and autonomy fractions respectively. Also
for each path p ∈ P , we use frp and fap to respectively denote
the flow of regular and autonomous vehicles along path p.
Note that for each p ∈ P , fp = frp + fap . The network flow
vector f is a nonnegative vector of regular and autonomous
flows along all network paths, i.e. f = (frp , f

a
p : p ∈ P).

A nonnegative flow vector f is called feasible for a given
network G if for each O/D pair w ∈W ,

∑
p∈Pw

frp = (1− αw)rw, and
∑
p∈Pw

fap = αwrw, (1a)

∀p ∈ P : frp ≥ 0, and fap ≥ 0. (1b)

For each link l ∈ L, fl is the total flow of vehicles on l, i.e.
fl =

∑
p∈P:l∈p fp. Since we need to decompose the total

link flow into regular and autonomous vehicles, we let frl
and fal be the total flow of regular and autonomous vehicles
along link l respectively, i.e. frl =

∑
p∈P:l∈p f

r
p and fal =∑

p∈P:l∈p f
a
p .

Note that if all vehicles are regular for all network O/D
pairs w ∈ W , i.e. αw = 0, then, we only have a single
class of regular vehicles, and for each path p ∈ P , fp =
frp . In this case, we can directly consider fp rather than its
decomposition into two classes of flows. The same argument
holds for link flows, fl = frl for all l ∈ L. In fact, if all
vehicles are regular, our routing game reduces to a single
class game.

∀w ∈W : αw = 0 ⇐⇒ ∀p ∈ P : fp = frp . (2)

In order to be able to model the incurred delays when
vehicles are routed throughout the network, it is assumed
that each link l ∈ L has a delay per unit of flow function
el(f

r
l , f

a
l ) : R2 → R. We assume that the delay per unit of

flow for each path p ∈ P is obtained by the summation of
the link delays over the links that form p

ep(f) =
∑

l∈L:l∈p

el(f
r
l , f

a
l ). (3)

Equation (3) implies that the delay of each path p ∈ P ,
depends not only on the flows of regular and autonomous
vehicles along path p, but also on the flows along other paths.
The overall network delay or social delay is given by

J(f) =
∑
p∈P

fpep(f). (4)

A. Wardrop Equilibrium

It is well known in the transportation literature that if
vehicles behave selfishly, a network is at an equilibrium if
the well known Wardrop conditions hold [12]. The Wardrop
conditions state that at equilibrium, no user has any incentive
for unilaterally changing its path. This implies that for an
equilibrium flow vector f , if there exists a path p ∈ Pw
such that either frp 6= 0 or fap 6= 0, we must have that
ep(f) ≤ ep′(f), for all p′ ∈ Pw.

Definition 1. A flow vector f is an equilibrium for a given
network G = (N,L,W ) if and only if for every O/D pair
w ∈W and every pair of paths p, p′ ∈ Pw,

frp (ep(f)− ep′(f)) ≤ 0, (5a)

fap (ep(f)− ep′(f)) ≤ 0. (5b)

Note that an implication of the above definition is that for
each O/D pair w ∈ W , and any two paths p, p′ ∈ Pw such
that fp 6= 0 and fp′ 6= 0, we must have that ep(f) = ep′(f).

Definition 2. Given an equilibrium flow vector f for a
network G = (N,L,W ), we define the delay of travel for
each O/D pair w ∈W to be

ew(f) := min
p∈Pw

ep(f). (6)



Motivated by the above discussion, ew(f) is precisely the
delay across all paths p ∈ Pw which have a nonzero flow.
Moreover, the equilibrium condition implies that for a path
p ∈ Pw with zero flow, we have ep(f) ≥ ew(f). It is worth
mentioning that when there are no autonomous vehicles,
since frp = fp for all paths p ∈ P , Conditions (5) reduce to:

∀w ∈W, ∀p, p′ ∈ Pw, fp (ep(f)− ep′(f)) ≤ 0. (7)

B. Delay Characterization

We first specify the structure of our delay functions. If
there is only a single class of regular vehicles in the network,
the US Bureau of Public Roads (BPR) [14] suggests the
following form of delay functions.

Assumption 1. When network links are shared by only
regular vehicles, the link delay functions el(fl) are of the
following form

el(fl) = al

(
1 + γl

(
fl
Cl

)βl
)
, (8)

where Cl is the capacity of link l, and al, γl, and βl are
nonnegative link parameters.

In practice, al is the free flow travel time along link l,
and βl is a positive integer ranging from 1 to 4. In order
to characterize the link delay functions in networks with
mixed autonomy, where we have two classes of vehicles,
we first need to model the impact of autonomous vehicles
on the link capacities. It was discussed in [9] that in networks
with mixed autonomy, the link capacity Cl depends on the
autonomy fraction of the link l defined as αl :=

fa
l

fa
l +fr

l
.

We use Cl(αl) to emphasize this dependence. Let ml and
Ml be the capacity of link l when all vehicles are regular
and autonomous respectively. Since autonomous vehicles are
capable of maintaining shorter headways, it is normally the
case that µl = ml

Ml
≤ 1 for each link l ∈ L. We will

subsequently refer to µl as the link’s degree of capacity
asymmetry following [9]. When the two classes of regular
and autonomous vehicles are present in the network, using
the results in [9], we have

Cl(αl) =
mlMl

αlml + (1− αl)Ml
. (9)

We adopt this model throughout this paper. Since for each
link l ∈ L, αl =

fa
l

fa
l +fr

l
and fl = fal + frl , using (9), for

networks with mixed autonomy, the delay function (8) can
be modified as:

el(f
r
l , f

a
l ) = al

(
1 + γl

(
frl
ml

+
fal
Ml

)βl
)
. (10)

III. PRIOR WORK

A. Existence of Equilibrium

We state the following proposition from [15] which studies
the conditions under which Wardrop Equilibrium exists for
a multi class traffic network.
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Fig. 1: A network with a single O/D pair and two paths.

Proposition 1. Given a network G = (N,L,W ), if the link
delay functions are continuous and monotone in the link
flow of each class, then there exists at least one Wardrop
equilibrium.

Remark 1. Using (10), since our assumed delay functions
are nonnegative, continuous, and monotone in the flow of
each class, Proposition 1 implies that there always exists at
least one Wardrop equilibrium for a routing game with mixed
autonomy.

B. Equilibrium Uniqueness

In this part, we review known results regarding the
uniqueness of Wardrop equilibrium. When multiple classes
of vehicles are present in the network, the uniqueness of the
equilibrium flow vector does not hold. However, uniqueness
in a weak sense is known to hold [16].

Proposition 2. For a general topology network G with
multiple classes of vehicles on each O/D pair, if the delay
functions are of the form (8), and the link capacities Cl are
fixed and the same for all vehicle classes, for a given demand
vector r, we have

1) The equilibrium is unique in a weak sense, i.e. for each
link l the total flow fl is unique.

2) For each O/D pair w ∈ W , the delay of travel ew(f)
is unique for all Wardrop equilibrium flow vectors f .

Note that if the conditions of Proposition 2 hold, the delay
of travel for each O/D pair ew(f) is a well defined function
of the network demand vector r and with a slight abuse of
notation can be rewritten as ew(r).

Remark 2. A routing game that has only a single class of
vehicles can be viewed as an instance of the games described
in Proposition 2. Therefore, uniqueness in a the weak sense
applies to games with a single class of vehicles too.

C. Social Delay Monotonicity

As we discussed above, in general, the equilibrium is not
unique. However, if the conditions of Proposition 2 hold for
a network, the social delay and the delay of travel for each
O/D pair are unique. In particular, for a single class routing
game on G = (N,L,W ), we recall the following from [17].

Proposition 3. Consider a network G = (N,L,W ), where
only one class of vehicles exist for each O/D pair w ∈ W .
Assume that for each link l ∈ L, el(.) is continuous, positive
valued, and monotonically increasing. Then, for each O/D
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Fig. 2: A network with a single O/D pair and three paths
from A to D.

pair w ∈ W , the delay of travel ew(r) is a continuous
function of the demand vector r. Furthermore, ew(.) is
nonincreasing in rw when all other demands are fixed.

IV. EQUILIBRIUM UNIQUENESS

Now we study equilibrium uniqueness in the mixed au-
tonomy setting. Using Remark 1, we know that there exists
at least one equilibrium. However, since in our setting, for
each link l, link capacity Cl depends on the autonomy ratio
αl, Proposition 2 does not apply. Indeed, we demonstrate
through an example that the equilibrium is not unique even
in the weak sense introduced in Proposition 2.

Example 1. Consider the network of Figure 1. Let p1 and
p2 be the ABD and ACD paths respectively. For each link
l = 1, · · · , 4, let the link parameters be βl = 1, al =
1,ml = 1, and Ml = 2. Thus, for each link l ∈ L, the

link delay function is el(frl , f
a
l ) = 1 + frl +

fal
2

. Assume
that the demand from node A to D is r = 2, and the
autonomy fraction α = 0.5. Let fr1 and fa1 be the regular
and autonomous vehicles flows along p1, and fr2 and fa2 be
the regular and autonomous flows along p2. At equilibrium,
since the network is symmetric, the case where one of the
paths has a zero flow, and the other one has a nonzero flow
cannot occur. Thus, at equilibrium, we must have

2 + 2fr1 + fa1 = 2 + 2fr2 + fa2

fr1 + fr2 = 1

fa1 + fa2 = 1

fr1 , f
a
1 , f

r
2 , f

a
2 ≥ 0.

Clearly, there is no unique solution to the above set of
equations. Moreover, among the set of all possible equilib-
rium flow vectors, for each link, the maximum link flow at
equilibrium is 1.25, whereas the minimum link flow is 0.75
at equilibrium, and the equilibrium is not unique even in the
weak sense.

V. NETWORKS WITH A SINGLE O/D PAIR

In this section, we study networks which have a single
O/D pair. For such networks, since there is only one O/D
pair, all paths originate from a common source o and end in
a common destination d. Since W is singleton in this case,
we omit the subscript w from rw, ew and αw throughout this
section. Note that when there is a single O/D pair, demand
vector r and vector of autonomy fraction α are scalars.
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Fig. 3: Maximum and minimum delay for Example 2
.

Having observed that in the mixed–autonomy setting, the
equilibrium is not unique, we study if the social delay is
unique for all network equilibrium flow vectors. To this end,
we use the notion of road degree of capacity asymmetry
introduced in [10]. In the sequel, we consider the following
two scenarios for investigating the properties of social delay.

1) homogeneous degrees of road capacity asymmetry,
where µl is the same for all links, i.e. µl = µ, for
all links l ∈ L, where µ is the common value of road
capacity asymmetry.

2) heterogeneous degrees of capacity asymmetry, where µl
varies on different links.

A. Homogeneous Degrees of Capacity Asymmetry

In this case, we can establish the uniqueness of social
delay, and characterize the relationship between social delay
and network autonomy fraction.

Theorem 1. Given a network G = (N,L,W ) with a signle
O/D pair and a homogeneous degree of capacity asymmetry
µ on all its links, for any demand r > 0, we have

1) For a fixed autonomy fraction 0 ≤ α ≤ 1, the social
delay J(f) is unique for all Wardrop equilibrium flow
vectors f .

2) If for each 0 ≤ α ≤ 1, we denote the common value
of social delay in the above by J(α), then J(.) is
continuous and nonincreasing.

Proof. Fix r > 0 and 0 ≤ α ≤ 1. Recalling Remark 1, we
know that a Wardrop equilibrium exists. Let f = (frp , f

a
p :

p ∈ P) be such an equilibrium where fp = fap +f
r
p for each

p in P . Define emin(f) := minp∈P ep(f). Since the network
has only one O/D pair, and the delay associated with all paths
with nonzero flows are all the same, the social delay can be
obtained by J(f) = remin(f). For each path p ∈ P , define
the fictitious single–class regular flow f̃p := frp + µfap . We
claim that the flow vector f̃ = (f̃p : p ∈ P) is a Wardrop
equilibrium for a routing game on G with a single class of
regular vehicles and a total demand of r̃ = r(1−α) + rαµ.

To see this, for each p ∈ P , we let ẽp(f̃) be the delay
incurred by f̃ on path p and show that the relations (7)



hold for f̃ . Fix p, p′ ∈ P and note that since f was a
Wardrop equilibrium in the original setting, we must have
frp (ep(f) − ep′(f)) ≤ 0, and fap (ep(f) − ep′(f)) ≤ 0.
Multiplying the latter by the positive constant µ and adding
the two inequalities, we have

f̃p(ep(f)− ep′(f)) ≤ 0, ∀p, p′ ∈ P. (11)

Now, we claim that for all p ∈ P , we have ep(f) = ẽp(f̃).
Note that for each link l ∈ L, we have f̃l = frl +µf

a
l . Using

the fact that µ = ml/Ml for all links l ∈ L, we get

ẽp(f̃) =
∑
l∈p

(
al + γl

(
frl + ml

Ml
fal

ml

)βl
)

=
∑
l∈p

(
al + γl

(
frl
ml

+
fal
Ml

)βl
)

= ep(f).

(12)

Substituting into (11), we realize that

f̃p(ẽp(f̃)− ẽp′(f̃)) ≤ 0, ∀p, p′ ∈ P, (13)

which means that f̃ is an equilibrium flow vector. Clearly, the
total demand of this new routing game is r̃ =

∑
p∈P f̃p =∑

p∈P f
r
p+µf

a
p = r(1−α)+µαr. Moreover, define ẽmin(f̃)

to be the minimum of ẽp(f̃) among p ∈ P . Since w is
the single O/D pair of the network, ẽmin(f̃) is indeed equal
to ẽw(f̃), the travel delay of the single O/D pair of the
network associated with f̃ . Note that Proposition 2 implies
that ẽmin(f̃) is a function of r̃ only. On the other hand, (12)
implies that ẽmin(f̃) = emin(f). Putting these together, we
realize that

J(f) = remin(f) = rẽmin(f̃) = rẽw(r̃).

Note that the right hand side of the above identity does not
depend on f , which establishes the proof of the first part. In
fact, this shows that

J(α) = rẽw(r(1− α) + αµr).

From Proposition 3, we know that ẽw(.) is continuous and
nonincreasing. Also, since µ ≤ 1, the map r 7→ r(1− α) +
αµr is continuous and nonincreasing. This completes the
proof of the second part.

B. Heterogeneous Degrees of Capacity Asymmetry

Now, we allow µl to vary among the network links.
We show that this makes the behavior of the system more
complex. First, we show via the following example that the
social delay is not necessarily unique in this case.

Example 2. Consider the network shown in Figure 2.
Assume that γl = 1, βl = 1, for l = 1, 2, · · · , 5. Let the other
link parameters be the following: {a1 = 1,m1 = 1,M1 =
1}, {a2 = 2,m2 = 1,M2 = 3}, {a3 = 1,m3 = 1,M3 = 2},
{a4 = 1,m4 = 1,M4 = 4}, and {a5 = 3,m5 = 1,M5 =
3}. Moreover, let the total flow from origin A to destination
D be 2. We computed the social delay for this network for
any α > 0 at different equilibria of the system, and we
observed that the social delay is not unique. In particular,
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Fig. 4: Maximum and minimum social delays for Example 3.

Figure 3 shows the plots of the maximum and minimum
social delay of system equilibria for every value of α. As
Figure 3 shows, as soon as α starts to increase from 0,
uniqueness of the social delay is lost. Once, α = 1, the
uniqueness of social delay is again preserved. This behavior
implies that the change in the social delay due to increasing
the autonomy ratio of the network is dependent on which
equilibrium the system will be at.

Now, we study the effect of increasing network autonomy
on the social delay. In the previous example, both the maxi-
mum and minimum social delays decreased as a function of
α. But, is this necessarily the case? We use the following
example to demonstrate that it might not be true in general,
as increasing network autonomy may worsen the social delay
in some networks.

Example 3. Consider the network in Figure 2 with the
following parameters: {a1 = 0,m1 = 0.1,M1 = 1

9},
{a2 = 50,m2 = 1,M2 = 1.1}, {a3 = 50,m3 = 1,M3 =
1.1}, {a4 = 0,m4 = 0.1,M4 = 1

9}, {a5 = 10,m5 =
0.5,M5 = 2}. Let the total flow r be 6. In this case,
clearly, µl < 1, for all links l ∈ L. Figure 4 shows the
maximum and minimum social delay in this case for different
values of α. Surprising, the maximum and minimum social
delay have a nonmonotonic behavior. For certain values
of α, even the minimum social delay is higher than the
social delay at α = 0. In particular, when all vehicles
are autonomous, the social delay of the network is higher
than that of the network when all vehicles are regular, i.e.
J(1) > J(0). This might be counter intuitive as we expect
the network with full autonomy to have a lower social delay.
However, this example shows that when capacity increases
are heterogeneous across the network, the selfish behavior of
vehicles might actually lead to worsening the social delay.

VI. NETWORKS WITH MULTIPLE O/D PAIRS

So far, we have seen that even in a network with only
one O/D pair, the introduction of autonomous vehicles can
result in complex behaviors. Thus, it should be expected
that a general network with multiple O/D pairs will exhibit
similar counter intuitive behaviors. In the previous section,
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Fig. 5: A network with three O/D pairs.

we saw that the existence of a homogeneous degree of
capacity asymmetry throughout the network is sufficient for
guaranteeing improvements in the social delay by increasing
the fraction of autonomous vehicles. We now show, via the
following example, that this is not the case for networks with
multiple O/D pairs.

Example 4. Consider the network shown in Figure 5. This
network was first introduced in [18]. There are three O/D
pairs, W = {(A,B), (B,C), (A,C)}. The total demand of the
network O/D pairs are rAB = 1, rAC = 20, and rBC = 100.
Assume that γl = 1, βl = 1, for all l ∈ L. Let the link
parameters be {aAB = 0,mAB = 1, ,MAB = 2}, {aBC =
0,mBC = 1}, and {aAC = 90,mAC = 1}. Let the vehicles
that wish to travel form A to C, and from B to C be all
regular vehicles, i.e. αAC = αBC = 0. If the autonomy ratio
of O/D pair AB is αAB = 0, the social delay is J = 12384.
However, the social delay is equal to 12398 when αAB =
0.1. Therefore, the existence of autonomy for a certain O/D
pair can result in worsening the social delay of the network.

It was shown in [19] that a decrease in demand of a
particular O/D pair, might lead to an increase of delay
along other O/D pairs and the social delay as result. In this
example, we showed that similar behaviors can also emerge
due to presence of selfishly routed autonomous vehicles. In
fact, what we have shown so far is that the long known
paradoxical traffic behavior resulting from constructing more
roads or reducing demands can actually happen in networks
with mixed autonomy due to the presence of autonomous
vehicles.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied how the coexistence of regular
and autonomous vehicles in traffic networks will affect
the network mobility when all vehicles select their routes
selfishly. We compared the network social delay at a Wardrop
equilibrium for networks with mixed vehicle autonomy with
that of networks with only regular vehicles. Having shown
that the equilibrium is not unique in some settings, we
derived the conditions under which the social delay is unique,
and it is further a nonincreasing and continuous function
of the fraction of autonomous vehicles on the roadways.
However, we showed that when these conditions do not hold,
counter intuitive behaviors, such as the fact that increasing
network autonomy fraction can worsen the network social
delay, might occur. We believe that the insight provided by

this work indicates that the mobility benefits of increasing
autonomy in traffic networks are not immediate. For future
steps, it is important to study the stability of the equilibria
for networks with mixed autonomy. Once the stable system
equilibria are characterized, control strategies must be devel-
oped for the system that are guaranteed to steer the system
to the equilibria that have improved social delays. Therefore,
revisiting routing and tolling strategies for such networks is
imperative.
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