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a b s t r a c t

This paper presents an algorithm and analysis of distributed learning and cooperative control for a multi-
agent system so that a global goal of the overall system can be achieved by locally acting agents. We
consider a resource-constrained multi-agent system, in which each agent has limited capabilities in
terms of sensing, computation, and communication. The proposed algorithm is executed by each agent
independently to estimate an unknown field of interest from noisy measurements and to coordinate
multiple agents in a distributed manner to discover peaks of the unknown field. Each mobile agent
maintains its own local estimate of the field and updates the estimate using collective measurements
from itself and nearby agents. Each agent then moves towards peaks of the field using the gradient of
its estimated field while avoiding collision and maintaining communication connectivity. The proposed
algorithm is based on a recursive spatial estimation of an unknown field. We show that the closed-
loop dynamics of the proposed multi-agent system can be transformed into a form of a stochastic
approximation algorithm and prove its convergence using Ljung’s ordinary differential equation (ODE)
approach. We also present extensive simulation results supporting our theoretical results.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, there has been a growing interest in wireless sensor
networks (Culler, Estrin, & Srivastava, 2004; Estrin, Culler, Pister,
& Sukhatme, 2002). A wireless sensor network consists of a large
number of sensor nodes. Each sensor node can perform sensing
and computation, and sensor nodes form an ad hoc wireless
network for communication. Applications of wireless sensor
networks include, but not limited to, environment monitoring,
building comfort control, traffic control, manufacturing and plant
automation, and surveillance systems (Oh, Schenato, Chen, &
Sastry, 2007, and the references therein). However, faced with the
dynamic nature of environment, stationary sensor networks are
sometimes inadequate and a mobile sensing technology shows
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superior performance in terms of its adaptability and high-
resolution sampling capability (Singh et al., 2007).
Mobility in a sensor network can increase its sensing coverage

both in space and time and robustness against dynamic changes
in the environment. As in wireless sensor networks, each mobile
agent is resource constrained; it operates under a short communi-
cation range, limited memory, and limited computational power.
These mobile agents form an ad hoc wireless network for commu-
nication. Although each agent has limited capabilities, as a group,
they can perform various tasks at a level which is compatible to a
small number of high-end mobile agent. To perform various tasks
such as exploration, surveillance, and environmental monitoring,
distributed coordination of mobile sensing agents is required to
achieve a global goal; and it has received significant attention re-
cently (Cortes, Martinez, Karatas, & Bullo, 2004; Jadbabie, Lin, &
Morse, 2003; Olfati-Saber, 2006; Ren & Beard, 2005; Tanner, Jad-
babaie, & Pappas, 2003).
Among challengingproblems in distributed coordination ofmo-

bile sensing agents, gradient climbing over an unknown field of
interest has attracted much attention of environmental scientists
and control engineers (Őgren, Fiorelli, & Leonard, 2004, DOD/ONR
MURI). This is due to numerous applications of tracking toxins in
a distributed environment. An interesting practical application is
to trace harmful algal blooms in a lake. For certain environmen-
tal conditions, rapidly reproducing harmful algal blooms in lakes
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http://www.elsevier.com/locate/automatica
mailto:jchoi@egr.msu.edu
mailto:songhwai@snu.ac.kr
mailto:horowitz@me.berkeley.edu
http://dx.doi.org/10.1016/j.automatica.2009.09.025


J. Choi et al. / Automatica 45 (2009) 2802–2814 2803
Fig. 1. The estimated field of chlorophyll generated by the harmful algal blooms
observation system (Harmful Algal BloomS Observing System) by NOAA. (Photo
courtesy of NOAA).

and in oceans can produce cyanotoxins (Center of Excellence for
Great Lakes). Exposure towater contaminatedwith algal cyanotox-
ins causes serious acute and chronic health effects to humans and
adverse effects to aquatic life (Center of Excellence for Great Lakes;
Harmful Algal BloomS Observing System). The level of chlorophyll
is a measure closely related to algal and cyanobacterial biomass.
Hence, there have been efforts to generate the estimated fields
of chlorophyll over the areas of concern (Fig. 1). Having had the
aforementionedmotivation, the objective of ourwork is to develop
theoretically-sound control algorithms for multi-agent systems to
trace peaks of a scalar field of interest (for example, harmful al-
gal blooms, temperature, pH, salinity, toxins, and chemical plumes
etc.). In general, theses scalar parameters provide rich information
about quality of environments, such as the air, lakes, and public
water systems.
The most common approach to this tracing problem has been

biologically inspired chemotaxis (Adler, 1966; Dhariwal, Sukhatme,
& Requicha, 2004), in which a mobile sensing agent is driven
according to a local gradient of a field of interest. However,
with this approach, the convergence rate can be slow and the
mobile robot may get stuck in the local maxima of the field. The
cooperative network of agents that performs adaptive gradient
climbing in a distributed environment was presented in DOD/ONR
MURI and Őgren et al. (2004). The centralized network can adapt
its configuration in response to the sensed environment in order to
optimize its gradient climb.
This problem of gradient climbing constantly occurs in biolog-

ical species. Aquatic organisms search for favorable regions that
contain abundant resources for their survival. For example, it is
well known that fish schools climb gradients of nutrients to lo-
cate the densest source of food. To locate resources, fish schools
use ‘‘taxis’’, a behavior in which they navigate habitats according
to local gradients in uncertain environments. Grünbaum (1998)
showed that schooling behavior can improve the ability of per-
forming taxis to climb gradients, since the swarming alignment
tendency can average out the stochastic sampling errors of indi-
viduals.
Olfati-Saber (2006) and Tanner et al. (2003) presented compre-

hensive analyses of the flocking algorithmby Reynolds (1987). This
flocking algorithmwas originally developed to simulate themove-
ments of flocking birds in computer graphics where each artifi-
cial bird follows a set of rather simple distributed rules (Reynolds,
1987). A bird in a flock coordinates with the movements of its
neighboring flock mates and tries to stay close to its neighbors
while avoiding collisions. In general, the collective swarm behav-
iors of birds/fish/ants/bees are known to be the outcomes of nat-
ural optimization (Bonabeau, Dorigo, & Theraulaz, 1999; Eberhart,
Shi, & Kennedy, 2001).
The state-of-the-art technology in spatial estimation by mo-

bile sensor networks is as follows. A distributed interpola-
tion scheme described in Martinez (in press) for field esti-
mation by mobile sensor networks uses a distributed non-
parametric inference method and made to be compatible with
Fig. 2. Left: Trajectories of the proposed multi-agent system. Right: Trajectories
of field estimating agents without communication and the swarming effort. The
estimated field by agent 1 is shown as a background in colors. In the color map,
red color denotes the highest scalar value while blue color represents the lowest
value. Agent 1 is plotted as a green dot. Thin contour lines represent the error field
between the true field and the estimated field. (+) and (o) represent, respectively,
initial and final locations. Solid lines represent trajectories of agents. See more
details about the simulation in Section 5.

coverage control (e.g., Cortes et al., 2004). A distributed Kriged
Kalman filter for robotic sensor networks to estimate a field of
interest is described in Cortés (in press). In each iteration of this
Kriged Kalman filter, agents execute a consensus algorithm based
on new measurements, e.g., Olfati-Saber and Shamma (2005), for
computing average values of interests. Then an iterative weighted
least-squares algorithm is performed to compute state estimates
of the field.
In this paper, we develop novel distributed learning and co-

operative control algorithms for multi-agent systems by extend-
ing the recent development in the flocking algorithm (Olfati-
Saber, 2006; Tanner et al., 2003). The learning and control al-
gorithms are performed at each agent using only local informa-
tion. However, they are designed so that agents as a whole ex-
hibit collective intelligence, i.e., a collection of agents achieves a
global goal. In a resource-constrained multi-agent system, the
communication range of each agent is limited as compared to
the size of a surveillance region. Hence, agents cannot perform
the coverage control as in Cortes et al. (2004), Graham and
Cortés (2009) and Martinez (in press). Instead, each agent takes
a measurement and also receives measurements from its neigh-
boring agents within its communication range. Upon receiving
collective measurements, each agent recursively updates its own
estimate of an unknown static field of interest. The recursive es-
timation is based on a radial basis function network in order to
represent a wide range of physical phenomena. To locate the max-
imum of the field, the sensing agent will climb the gradient of
its own estimated field. In our proposed approach, each agent
has its own recursive estimation of the field based on collective
measurements from itself and its neighbors without requiring the
consensus step of the Kriged Kalman filter (Cortés, in press).
The proposed cooperative control mimics the individual and
social behaviors of a distributed pack of animals communi-
cating locally to search for their densest resources in an un-
certain environment. The fish school’s efficient performance
of climbing nutrient gradients to search food resources and
the exceptional geographical mapping capability of biological
creatures have motivated the development of our multi-agent
systems. Simulation results in Section 5 strongly support our idea
and validate the effectiveness of the proposed multi-agent sys-
tems with cooperative control as compared to field estimating
agents without cooperative control. As shown in Fig. 2, the pro-
posed multi-agent system collectively locate the maximum of the
unknown field rapidly while, without communication and the
swarming effort, only a couple of agents near the maximum point
can slowly estimate and climb the gradient of the field.
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This paper also presents convergence properties of the pro-
posed distributed learning and cooperative control algorithms by
transforming the closed-loop dynamics of the multi-agent system
into a form of a stochastic approximation algorithm. Our theoret-
ical results are based on the ordinary differential equation (ODE)
approach (Kushner & Yin, 1997; Ljung, 1977). We also present a
set of sufficient conditions for which the convergence is guaran-
teed with probability one.
This paper is organized as follows. In Section 2, we briefly in-

troduce the mobile sensing network model, notations related to a
graph, and artificial potentials to form a swarming behavior. A re-
cursive radial basis function learning algorithm for mapping the
field of interest is presented in Section 3.1. In Section 3.2, coop-
eratively learning control is described with a stochastic approxi-
mation gain. Section 4 analyzes the convergence properties of the
proposed coordination algorithm based on the ODE approach. In
Section 5, the effectiveness of the proposed multi-agent system is
demonstrated by simulation results with respect to different fields
of interest and conditions.

2. Mobile sensing agent network

In this section, we describe the mathematical framework for
mobile sensing agent networks and explain notations used in this
paper.
Let R,R≥0,R>0,Z,Z≥0,Z>0 denote, respectively, the set of

real, non-negative real, positive real, integer, non-negative inte-
ger, and positive integer numbers. The positive definiteness (re-
spectively, semi-definiteness) of a matrix A is denoted by A � 0
(respectively, A � 0). In ∈ Rn×n and 0n ∈ Rn×n denote the identity
and zero matrices, respectively. 0m×n ∈ Rm×n denotes the m by n
zero matrix. However, the subscript can be omitted for the sake of
brevity when it is obvious from the context. The gradient of a dif-
ferentiable real function φ(q) : R2n → Rwith respect to its vector
domain q is denoted by

∇φ(q) :=
[
∂φ(q)
∂q1

T ∂φ(q)
∂q2

T

· · ·
∂φ(q)
∂qn

T]T
∈ R2n,

where q = col(q1, . . . , qn) ∈ R2n and qi ∈ R2. To be concise, the
gradient of φ(q)with respect to qi is denoted by

∇φ(qi) :=
∂φ(q)
∂qi

∈ R2.

The norm ‖·‖will denote the standard Euclidean norm (or 2-norm)
on vectors. The induced matrix 2-norm is defined as

‖A‖ := sup
x6=0

‖Ax‖
‖x‖

,

where A ∈ Rm×n. Other notation will be explained in due course.

2.1. Models for mobile sensing agents

Let Ns be the number of sensing agents distributed over the
surveillance region M ⊂ R2, which is assumed to be a convex
and compact set. The identity of each agent is indexed by I :=
{1, 2, . . . ,Ns}. Let qi(t) ∈ M be the location of the ith sensing
agent at time t ∈ R≥0 and let q := col(q1, q2, . . . , qNs) ∈ R2Ns
be the configuration of the multi-agent system. The discrete time,
high-level dynamics of agent i is modeled by

qi(t +∆t) = qi(t)+∆tvi(t), (1)

where qi(t) ∈ R2 and vi(t) ∈ R2 are, respectively, the position
and the control input of agent i at time t ∈ R≥0. ∆t ∈ R>0
denotes the iteration step size (or sampling time). We assume that
themeasurement y(qi(t)) of the ith sensor includes the scalar value
Fig. 3. The model of the mobile sensing agent network. The agent 2 gathers
measurements from two neighboring sensing agents 1 and 3 in an r interactive
range. Hence, the collective measurements of agent 2 will be sampled at locations
denoted by agents 1, 2 and 3.

of the field µ(qi(t)) and sensor noisew(t), at its position qi(t) and
a sampled time t ,

y(qi(t)) := µ(qi(t))+ w(t), (2)

where µ:M→ [0, µmax] is an unknown field of interest.
The proposed algorithm will be executed by each agent

independently to estimate an unknown field of interest from noisy
measurements and to coordinate multiple agents in a distributed
manner to discover peaks of the unknown field. Each mobile agent
will maintain its own local estimate of the field and will update
the estimate using collectivemeasurements from itself and nearby
agents. Each agent will then be programmed to move towards
peaks of the field using the gradient of its estimated field.

2.2. Graph-theoretic representation

The group behavior of mobile sensing agents and their com-
plicated interactions with neighbors are best treated by a graph
with edges. Let G(q) := (I, E(q)) be an undirected communica-
tion graph such that an edge (i, j) ∈ E(q) if and only if agent i can
communicate with agent j 6= i. We assume that each agent can
communicate with its neighboring agents within a limited trans-
mission range given by a radius of r , as depicted in Fig. 3. There-
fore, (i, j) ∈ E(q) if and only if ‖qi(t) − qj(t)‖ ≤ r . For example,
as shown in Fig. 3, agent 2 communicates with and collects mea-
surements from agents 1 and 3 within its communication range.
We define the neighborhood of agent iwith a configuration of q by
N (i, q) := {j ∈ I | (i, j) ∈ E(q)}. The adjacencymatrix A := [aij] of
an undirected graph G is a symmetric matrix such that aij = k3 ∈
R>0 if vertex i and vertex j are neighbors and aij = 0 otherwise.
Notice that an adjacency matrix A can be also defined in a smooth
fashion in terms of q (Olfati-Saber, 2006). The scalar graph Lapla-
cian L = [lij] ∈ RNs×Ns is a matrix defined as L := DA−A,where DA
is a diagonal matrix whose diagonal entries are row sums of A, i.e.,
DA := diag (

∑Ns
j=1 aij). The two-dimensional graph Laplacian is de-

fined as L̂ := L⊗I2,where⊗ is the Kronecker product. For instance,
the corresponding A, L and L̂ for the example shown in Fig. 3 are:

A = k3

0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

 , L = k3

 2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 0

 ,

L̂ = L⊗ I2 = k3

2I2 −I2 −I2 02
−I2 2I2 −I2 02
−I2 −I2 2I2 02
02 02 02 02

 .
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Let pi ∈ R2 be the state of agent i for i ∈ I under the topology of an
undirected graph G. Two agents i and j are said to agree whenever
they have the same states, i.e., pi = pj. The quadratic disagreement
functionΨG:R2Ns → R≥0 evaluates the group disagreement in the
network of agents:

ΨG(p) :=
1
4

∑
(i,j)∈E(q)

aij‖pj − pi‖2, (3)

where p := col (p1, p2, . . . , pNs) ∈ R2Ns . A disagreement function
(Godsil & Royle, 2001; Olfati-Saber, 2006) can be obtained via the
Laplacian L̂:

ΨG(p) =
1
2
pTL̂p, (4)

and hence the gradient of ΨG(p)with respect to p is given by

∇ΨG(p) = L̂p. (5)

The properties shown in (4) and (5)will be used in the convergence
analysis in Section 4.

2.3. Swarming behavior

A group of agents are coordinated to collect (noisy) samples
from a stationary field at diverse locations for the purpose of
estimating the field of interest. A set of artificial potential functions
creates a swarming behavior of agents and provides agents with
obstacle avoidance capabilities. We use attractive and repulsive
potential functions similar to ones used in Choi, Oh, and Horowitz
(2007), Olfati-Saber (2006) and Tanner et al. (2003) to generate a
swarming behavior. To enforce a group of agents to satisfy a set of
algebraic constraints ‖qi−qj‖ = d for all j ∈ N (i, q), we introduce
a smooth collective potential function

U1(q) :=
∑
i

∑
j∈N (i,q),j6=i

Uij(‖qi − qj‖2)

=

∑
i

∑
j∈N (i,q),j6=i

Uij(rij), (6)

where rij := ‖qi−qj‖2. The pair-wise attractive/repulsive potential
function Uij(·) in (6) is defined by

Uij(rij) :=
1
2

(
log(α + rij)+

α + d2

α + rij

)
, if rij < d20, (7)

otherwise (i.e., rij ≥ d20), it is defined according to the gradient of
the potential, whichwill be described shortly. Hereα, d ∈ R>0 and
d < d0. The gradient of the potential with respect to qi for agent i
is given by

∇U1(qi) =
∂U1(q)
∂qi

=

∑
j6=i

∂Uij(r)
∂r

∣∣∣∣
r=rij

2(qi − qj)

=


∑
j6=i

(rij − d2)(qi − qj)
(α + rij)2

if rij < d20

∑
j6=i

ρ

(√
rij − d0
|d1 − d0|

)
‖d20 − d

2
‖

(α + d20)2
(qi − qj) if rij ≥ d20,

(8)

where ρ : R≥0 → [0, 1] is the bump function (Olfati-Saber, 2006)

ρ(z) :=


1, z ∈ [0, h);
1
2

[
1+ cos

(
π
(z − h)
(1− h)

)]
, z ∈ [h, 1];

0, otherwise.
Fig. 4. The reaction force (vertical axis) between two agents is generated by
the potential function in (6)–(8) with respect to ‖qi − qj‖ (horizontal axis). Here
parameters d = 0.4, d0 = 0.648, d1 = 1.4 and r = 1.6 are used.

Notice that ρ varies smoothly from 1 to 0 as the scalar input in-
creases. (6)–(8) will be used to produce a continuously differen-
tiable (C1) reaction potential force between any two agents as
depicted in Fig. 4. Parameters α, d, d0, and d1 will shape the ar-
tificial potential function. A typical way to choose those param-
eters are explained as follows. In Eqs. (6)–(8), a non-zero gain
factor α is introduced to prevent the reaction force from diverging
at rij = ‖qi − qj‖2 = 0. As illustrated in Fig. 4, this potential yields
a reaction force that is attracting when the agents are apart and
repelling when a pair of two agents are too close. It has an equi-
librium point at a distance of d. d0 will be chosen at the location
where the slope of the potential force first becomes zero (Fig. 4)
as
√
rij increases from zero. For

√
rij > d0, the bump function will

shape the potential force to become zero smoothly when the rela-
tive distance reaches to d1 which is slightly shorter than the radius
of the transmission range r . Hence, in general, we configure param-
eters such that d < d0 < d1 < r , which will force the gradient of
the potential function due to agent j in (8) to be a zero vector before
the communication link to agent i is disconnected from agent j. In
this way, we can construct a continuously differentiable collective
potential force between any two agents in spite of the limited com-
munication range. We also introduce a potential U2 to model the
environment. U2 enforces each agent to stay inside the closed and
connected surveillance region in M and prevents collisions with
obstacles inM. Define the total artificial potential by

U(q) := k1U1(q)+ k2U2(q), (9)

where k1, k2 ∈ R>0 are weighting factors. A swarming behavior
and an obstacle avoidance capability of each agent will be devel-
oped in Section 3.2.

3. Distributed learning and cooperative control

In this section,wedescribe distributed learning and cooperative
control algorithms. The sensing agent will receive measurements
from its neighboring agents within a limited transmission range.
Upon receiving measurements, each mobile sensing agent will
recursively update the estimate of an unknown static field of
interest using the distributed learning algorithm. Based on the
estimated field, each agent moves to the peak of the field using the
cooperative control algorithm.

3.1. Distributed learning

We introduce a distributed learning algorithm for each mobile
sensing agent to estimate a static field of interest µ : M →

[0, µmax]. Suppose that the scalar field µ(ν) is generated by a
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network of radial basis functions1:

µ(ν) :=

m∑
j=1

φj(ν)θj = φ
T(ν)Θ, (10)

where φT(ν) andΘ are defined respectively by

φT(ν) :=
[
φ1(ν) φ2(ν) · · · φm(ν)

]
,

Θ :=
[
θ1 θ2 · · · θm

]T
∈ Θ,

where Θ ⊂ Rm is a compact set. Gaussian radial basis functions
{φj(ν)} are given by

φj(ν) :=
1
Γj
exp

(
−‖ν − κj‖

2

2σ 2j

)
, (11)

where σj is the width of the Gaussian basis and Γj is a normalizing
constant. Centers of basis functions {κj | j ∈ {1, . . . ,m}} are
uniformly distributed in the surveillance regionM. Θ ∈ Θ ⊂ Rm
is the true parameter of the regression model in (10). From (2),
we have observations through sensors at the location νk, y(νk) =
φT(νk)Θ + w(k), where k is a measurement sampling index.
Based on the observations and regressors {(y(νk), φ(νk))}nk=1, our
objective is to find Θ̂ which minimizes the least-squares error:
n∑
k=1

|y(νk)− φT(νk)Θ̂|2. (12)

Remark 1. Our environmentalmodel in (10) can be viewed as a ra-
dial basis function network tomodel nonlinear spatial phenomena.
Other popular approaches to model nonlinear spatial phenomena
includeGaussian processes (MacKay, 1998; Rasmussen&Williams,
2006) and kriging models (Cressie, 1991). A dynamical version of
(10) was used to represent a time-varying trend in the space–time
Kalman filter model (Cressie & Wikle, 2002) for modeling spatio-
temporal random fields. Recently, these approaches have been fre-
quently adopted formobile sensor networks (Cortés, in press ; Gra-
ham & Cortés, 2009; Martinez, in press).

Noiseless measurements

Let us first consider the measurement model (2) without the
sensor noise w(k). Similar spatial estimation algorithms with a
known sensor noise level for achieving the minimum variance of
the estimation error can be found in Choi et al. (2008a,b). For a set
{(y(νk), φ(νk))}nk=1, the optimal least-squares estimation solution
that minimizes the error function in (12) is well known (Åström &
Wittenmark, 1995):

Θ̂(n) = P(n, 1)ΦT(n, 1)Y (n, 1), (13)

where (for simplicity, we abuse notations by letting y(k) := y(νk)
and φ(k) := φ(νk))

Y (n, s) :=
[
y(s) y(s+ 1) · · · y(n)

]T
∈ Rn−s+1,

Φ(n, s) :=
[
φ(s) · · · φ(n)

]T
∈ Rn−s+1×m,

P(n, s) := [ΦT(n, s)Φ(n, s)]−1

=

[
n∑
k=s

φ(k)φT(k)

]−1
∈ Rm×m.

1 We have considered a simple parameterization for the field of interest to focus
more on the design and the convergence analysis of learning agents. See more
general models used for the field of interest in Cortés (in press), Choi, Lee, and Oh
(2008a,b).
During a time interval between the coordination iteration indices t
and t +∆t as in (1), we suppose that a sensing agent has collected
a number s of samples from itself and its neighbors. Assume that
at the previous iteration, the agent has already updated the field
µ̂(·) based on the previous data set {(y(k), φ(k))}n−sk=1, where n −
s is the total number of past measurements. Now the sensing
agent needs to update the field µ̂(·) upon receiving collectively
measured samples at a number s of points. We then have the
following algorithm. Assume that ΦT(t)Φ(t) is nonsingular for
all t . For the collected number s of observations and regressors
{(y(k), φ(k))}nk=n−s+1, consider the recursive algorithm given as

K(n) = P(n− s)ΦT
∗

[
Is + Φ∗P(n− s)ΦT∗

]−1
,

P(n) = [Im − K(n)Φ∗]P(n− s),

Θ̂(n) = Θ̂(n− s)+ K(n)
[
Y∗ − Φ∗Θ̂(n− s)

]
,

µ̂(ν) := φT(ν)Θ̂(n),

(14)

where some abbreviations are defined: Y∗ := Y (n, n− s+1) ∈ Rs,
Φ∗ = Φ(n, n − s + 1) ∈ Rs×m, ΦT(n) := ΦT(n, 1) ∈ Rn×m,
Y (n) := Y (n, 1) ∈ Rn and P(n) := P(n, 1) ∈ Rm×m. Then it
is straightforward to see that the recursive estimation presented
in (14) is the least-squares estimation that minimizes the error
function in (12).

Remark 2. ΦT(n)Φ(n) is always singular for n < m.ΦT(n)Φ(n) is
nonsingular for n ≥ m except for the case where measurements
are only taken at a set of measure zero, for example, a line splitting
two Gaussian radial basis functions equally such that φi(ν) =
φj(ν). In practice, each agent starts the recursive LSE algorithm in
(14) with initial states Θ̂(0) and P(0) � 0 which corresponds to
the situation in which the parameters have an a priori distribution
and the agent keeps running the recursive algorithm with new
measurements. With these initial values, we have

P−1(n) := P−1(0)+ ΦT(n)Φ(n) � 0. (15)

In the next subsection, we elaborate on the case of noisy obser-
vations and the resulting effects on the estimated field and its
gradient.

Noisy measurements

Consider the measurement model (2) with the sensor noise
w(k), which is assumed to be a white noise sequence with an un-
known varianceW :

E(w(k)) = 0, E(w(k)w(`)) =
{
W > 0 if k = `
0 if k 6= `, (16)

where E denotes the expectation operator. Moreover, we assume
that there exists L <∞ so that

|w(k)| < L with probability one (w.p.1) ∀k. (17)

Given the measurement data set

{y(µ) | µ ∈ S} , where S = {νk | 1 ≤ k ≤ n}

and the sensor noise {w(k) | k ∈ {1, . . . , n}} defined in (16) and
(17), an agentwill estimate Θ̂(n) using the recursive LSE algorithm
in (14). Let the estimation error vector be Θ̃(n) := Θ̂(n)−Θ . We
also define the error of the estimated field at the location ν ∈M by

µ̃(S, ν) := µ̂(S, ν)− µ(ν) = φT(ν)Θ̃(|S|), (18)

where |S| is the cardinality of the set S. The error of the estimated
field at ν ∈M is then obtained by

µ̃(S, ν) = E(µ̃(S, ν))+ ε(S, ν), (19)
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where

E(µ̃(S, ν)) := φT(ν)

[
P(|S|)

∑
νt∈S

φ(νt)φ
T(νt)− Im

]
Θ,

ε(S, ν) := φT(ν)

[
P(|S|)

|S|∑
t=1

φ(νt)w(t)

]
,

where |S| is the total number of collective measurements for the
associated agent. For persistent exciting coordination strategies
(ΦT
∗
Φ∗ � 0), the estimator is asymptotically2 unbiased

lim
|S|→∞

E(µ̃(S, ν)) = 0, ∀ν ∈M. (20)

The variance of the estimation error is given by

E(ε(S, ν)εT(S, ν)) = φT(ν)WP(|S|)φ(ν),

= φT(ν)
W
|S|
R−1(S)φ(ν), (21)

where R(S) is defined by

R(S) :=

[
P−1(0)
|S|

+
1
|S|

∑
νk∈S

φ(νk)φ
T(νk)

]
. (22)

Remark 3. From (21), it is straightforward to see that the estima-
tion error variance is a function of the evaluated position ν inM, is
proportional to the varianceW , and decreases at the rate of 1/|S|
and R−1(S). R(S) asymptotically serves as a time average of outer
products of basis functions evaluated at themeasurement points in
S, which implies that the error variance is smaller at places where
the agent has collected more samples.

The gradient of the field of interest is denoted by

∇µ(ν) :=
∂µ(x)
∂x

∣∣∣∣
x=ν
. (23)

From (10), we have

∇µ(ν) =
∂φT(x)
∂x

∣∣∣∣
x=ν
Θ =: φ′T(ν)Θ ∈ R2×1, (24)

where φ′T(ν) ∈ R2×m. Thus, the gradient of the estimated field
based on observations S := {νk}nk=1 and {y(µ)}µ∈S is given by

∇µ̂(S, ν) := φ′T(ν)Θ̂(|S|) ∈ R2×1. (25)

The error of the estimated gradient at the location ν ∈ M is
obtained by

∇µ̃(S, ν) := φ′T(ν)Θ̂(|S|)−∇µ(ν) = φ′T(ν)Θ̃(|S|)

= E(∇µ̃(S, ν))+∇ε(S, ν), (26)

where

E(∇µ̃(S, ν)) = φ′T(ν)

[
P(|S|)

∑
νk∈S

φ(νk)φ
T(νk)− Im

]
Θ,

∇ε(S, ν) := φ′T(ν)

[
P(|S|)

|S|∑
k=1

φ(νk)w(k)

]
.

2 It is asymptotically unbiased if a priori distribution of Θ(0) and P(0) is not
available.
Analogous to (20) and (21), for ΦT
∗
Φ∗ � 0, the gradient estimator

is asymptotically unbiased

lim
|S|→∞

E(∇µ̃(S, ν)) = 0, ∀ν ∈M, (27)

and the covariance matrix E(∇ε(S, ν)∇εT(S, ν)) is obtained by

φ′T(ν)
W
|S|
R−1(S)φ′(ν),

where R(S) is defined in (22). Now we present our cooperatively
learning control protocol.

3.2. Cooperative control

Each mobile agent receives measurements from neighbors.
Then it updates its gradient of the estimated field using Θ̂ from
the recursive algorithm presented in (14). Subsequently, based on
this updated gradient, the control for its coordination will be de-
cided. Hereafter, we apply a new time notation used for the coor-
dination, to the recursive LSE algorithm in (14). In particular, we
replace n − s ∈ Z≥0 by t ∈ Z≥0 and n ∈ Z≥0 by t + 1 ∈ Z≥0 in
(14) such that the resulting recursive algorithmwith the new time
index for agent i at its position qi(t) is given by

Ki(t + 1) = Pi(t)ΦT∗i
(
Is + Φ∗iPi(t)ΦT∗i

)−1
,

Pi(t + 1) = (Im − Ki(t + 1)Φ∗i)Pi(t),

Θ̂i(t + 1) = Θ̂i(t)+ Ki(t + 1)
[
Y∗i − Φ∗iΘ̂i(t)

]
,

∇µ̂i(t, qi(t)) = φ′T(qi(t))Θ̂i(t + 1),

(28)

where ∇µ̂i(t, ν) : Z≥0 × M → R2 denotes the gradient of the
estimated field at ν based on measurements before the time t + 1.
Y∗i andΦ∗i of agent i are defined in the same way as Y∗ andΦ∗ are
defined in (14). Y∗i is the collection of cooperativelymeasured data.
From (2), for all j ∈ N (i, q(t)) ∪ {i}, we have

Y∗i = Φ∗iΘ +


...

wj(k)
...

 =: Φ∗iΘ + w∗i(t), (29)

where the sampled time of themeasurements can vary among sen-
sors but we label the time index by t for any sampled time con-
tained in a measurement period between t and t + 1. wj(k) is the
measurement noise of sensor j, and is independently and identi-
cally distributed over j ∈ I. We also define a new variable w∗i(t)
as in (29) for later use.
Based on the latest update of the gradient of the estimated field

∇µ̂i(t, qi(t)), a distributed control vi(t + 1) in (1) for agent i is
proposed by

vi(t + 1) :=
γ (t + 1)
∆t

[
∆t

γ (t)
vi(t)+ γ (t)ui(t)

]
, (30)

with

ui(t) := −∇U(qi(t))− kdi
∆t

γ (t)
vi(t)

+

∑
j∈N (i,q(t))

aij(q(t))
(
∆t(vj(t)− vi(t))

γ (t)

)
+ k4∇µ̂i(t, qi(t)), (31)

where k4 ∈ R>0 is a gain factor for the estimated gradient and kdi ∈
R≥0 is a gain for the velocity feedback. The first term in the right-
hand side of (31) is the gradient of the artificial potential defined
in (9) which attracts agents while avoiding collisions among them.
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Also it restricts the movements of agents inside M; appropriate
artificial potentials can be added to U(qi) for agents to avoid
obstacles in M. The second term in (31) provides damping. The
third term in (31) is an effort for agent i to match its velocity with
those of neighbors. This term is used for the ‘‘velocity consensus’’
and serves as a damping force among agents. The gradient ascent
of the estimated field is provided as the last term.
The control for the coordination of sensing agents gradually

decreases for perfect tracking of the maximum of an unknown
field in spite of the estimation based on the noisy measurements.
We have proposed the control protocol in (30) with a standard
adaptive gain sequence γ (t) that satisfies the following properties

γ (t) > 0,
∞∑
t=1

γ (t) = ∞,
∞∑
t=1

γ 2(t) <∞,

lim
t→∞

sup [1/γ (t)− 1/γ (t − 1)] <∞.
(32)

This gain sequence is often used for stochastic approximation
algorithms (Kushner & Yin, 1997; Ljung, 1977) and enables us to
apply the ODE approach (Ljung, 1977, 1975; Ljung & Söderström,
1983) for convergence analysis.
For the convenience of analysis, we change variables. In partic-

ular, we introduce pi(t), a scaled version of the velocity state vi(t):

pi(t) :=
∆t

γ (t)
vi(t), (33)

where vi(t) is the control input to agent i as defined in (30). After
the change of variables in (33), the resulting dynamics of agent i is
given by{
qi(t + 1) = qi(t)+ γ (t)pi(t),
pi(t + 1) = pi(t)+ γ (t)ui(t),

(34)

where we applied new notations to (1) by replacing ∆tvi(t) by
γ (t)pi(t), t +∆t ∈ R≥0 by t + 1 ∈ Z≥0 and t ∈ R≥0 by t ∈ Z≥0.
Incorporating the discrete time model in (34) along with the

proposed control in (30) and (31) gives

qi(t + 1) = qi(t)+ γ (t)pi(t),

pi(t + 1) = pi(t)+ γ (t) {−∇U(qi(t))− kdipi(t)

−∇ΨG(pi(t))+ k4φ′T(qi(t))Θ̂i(t + 1)
}
,

(35)

where ∇ΨG(pi(t)) is the gradient of the disagreement function
(defined in (3) and (5)) with respect to pi:

∇ΨG(pi(t)) =
∑

j∈N (i,q(t))

aij(q(t))(pi(t)− pj(t)).

In Section 4, we will transform our multi-agent system into a
recursive stochastic algorithm with states

x(t) := col(q1, . . . , qNs(t), p1(t), . . . , pNs(t)),

and

ϕ(t) := col(Θ̃1(t), . . . , Θ̃Ns(t)).

4. Convergence analysis

In order to analyze the convergence properties of (28), (35)
and (32), we utilize Ljung’s ordinary differential equation (ODE)
approach developed in Ljung (1977, 1975) and Ljung and Söder-
ström (1983). In particular, Ljung (1977, 1975) presented an anal-
ysis technique of general recursive stochastic algorithms in the
canonical form of

x(t) = x(t − 1)+ γ (t)Q (t; x(t − 1), ϕ(t)), (36)
along with the observation process

ϕ(t) = g(t; x(t − 1), ϕ(t − 1), e(t)). (37)

In order to use the ODE approach, for this nonlinear observation
process in (37), the following regularity conditions in Ljung (1975)
need to be satisfied. Let DR be a subset of the x space in (36), where
the regularity conditions hold.

C1: ‖g(x, ϕ, e)‖ < C for all ϕ, e for all x ∈ DR.
C2: The function Q (t, x, ϕ) is continuously differentiable with

respect to x and ϕ for x ∈ DR. The derivatives are, for fixed
x and ϕ, bounded in t .

C3: g(t; x, ϕ, e) is continuously differentiable with respect to x ∈
DR.

C4: Define ϕ̄(t, x̄) as

ϕ̄(t, x̄) = g(t; x̄, ϕ(t − 1, x̄), e(t)), ϕ̄(0, x̄) = 0, (38)

and assume that g(·) has the property

‖ϕ̄(t, x̄)− ϕ(t)‖ < C max
n≤k≤t
‖x̄− x(k)‖,

if ϕ̄(n, x̄) = ϕ(n). Thismeans that small variations in x in (37)
are not amplified to a higher magnitude for the observations
ϕ.

C5: Let ϕ̄1(t, x̄) and ϕ̄2(t, x̄) be solutions of (38) with ϕ̄1(s, x̄) :=
ϕ01 and ϕ̄2(s, x̄) := ϕ02 . Then define DS as the set of all x̄ for
which the following holds:

‖ϕ̄1(t, x̄)− ϕ̄2(t, x̄)‖ < C(ϕ01 , ϕ
0
2)λ

t−s(x̄),

where t > s and λ(x̄) < 1. This is the region of exponential
stability of (37).

C6: limt→∞ EQ (t, x̄, ϕ̄(t, x̄)) exists for x̄ ∈ DR and is denoted by
f (x̄). The expectation is over {e(·)}.

C7: e(·) is a sequence of independent random variables.
C8:

∑
∞

t=1 γ (t) = ∞.
C9:

∑
∞

t=1 γ
p(t) <∞ for some p.

C10: γ (·) is a decreasing sequence.
C11: limt→∞ sup[1/γ (t)− 1/γ (t − 1)] <∞.

For practical algorithm implementation, the projection or satu-
ration is often introduced (Kushner & Yin, 1997; Ljung, 1977) to
meet the boundedness condition required in the ODE approach
(Ljung, 1977). Since dynamics of agents are given by a single in-
tegrator, the position of the agent can be controlled

qi(t + 1) = qi(t)+ γ (t)pi(t),

where pi(t) is the control. We can then apply the usual saturation
given by [·]D

x(t) = [Ω(t)]D =
{
Ω(t), Ω(t) ∈ D
x(t − 1), Ω(t) 6∈ D, (39)

where D is a compact subject of DR in which the regularity condi-
tions hold. x(t) and Ω(t) denote the left- and right-hand sides of
(36) respectively, i.e., the projected algorithm updates only if the
updated value belongs to D otherwise it keeps the previous state.
Our closed-loop system in (35) will be converted to the canonical
form in (36). Throughout the paper, we assume that the projection
is applied to the resulted algorithm in the form of (36). The pro-
jection disappears in the averaged updating directions. Hence, the
convergence properties of the projected algorithm can be studied
as if therewas no projection in (36). Formore details, see Ljung and
Söderström (1983) and Wigren (1994) and the references therein.
We will then utilize the following corollary reported in Ljung

and Söderström (1983).
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Corollary 4 (Ljung & Söderström, 1983). Consider the algorithms
(36), (37) and (39) subject to the regularity conditions C1–C11. Let
DR be an open connected subset of DS . Let D in (39) be the compact
subset of DR such that the trajectories of the associated ODE

d
dτ
x(τ ) = f (x(τ )) (40)

where

f (x) := lim
t→∞

EQ (t; x, ϕ̄(t, x)),

that start in D remain in a closed subset D̄R of DR for τ > 0. Assume
that the differential equation (40) has an invariant set Dc with a
domain of attraction DA ⊃ D.
Then either

x(t)→ Dc, with probability one as t →∞, (41)

or

x(t)→ ∂D, with probability one as t →∞, (42)

where ∂D is the boundary of D.

The conclusion (42) is possible only if there is a trajectory of the
differential equation in (40) that leaves D in (39).
Now we present our main results. The following lemma shows

how to transform our coordination and estimation algorithms to
the canonical forms in (36) and (37).

Lemma 5. The algorithms (35) and (28) can be transformed into the
forms of (36) and (37) respectively, using the following definitions;

q(t) := col(q1(t), . . . , qNs(t)) ∈ R2Ns ,

p(t) := col(p1(t), . . . , pNs(t)) ∈ R2Ns ,

x(t) := [qT(t), pT(t)]T ∈ R4Ns ,
Q (t; x(t − 1), ϕ(t))

:=

[
p

−∇U(q)− (L̂(q)+ Kd)p−∇Ĉ(ϕ, q)

]
,

(43)

where Kd = diag (kd1, . . . , kdNs) ⊗ I2 � 0. The gradient of the
estimated cost function ∇Ĉ(ϕ(t), q(t − 1)) ∈ R2Ns is defined by

∇Ĉ(ϕ(t), q(t − 1)) = −k4col(∇µ̂1(t − 1, q1(t − 1)), . . . ,
∇µ̂Ns(t − 1, qNs(t − 1)))

= −k4col(φ′T(q1(t − 1))Θ̂1(t), . . . ,

φ′T(qNs(t − 1))Θ̂Ns(t)).

For the observation process in (37), we have:

ϕ(t) = g(t; x(t − 1), ϕ(t − 1), e(t))
= A(t; x(t − 1))ϕ(t − 1)+ B(t; x(t − 1))e(t), (44)

where

ϕ(t) := col(Θ̃1(t), . . . , Θ̃Ns(t)) ∈ RmNs ,
A(t; x(t − 1)) := diag (Im − K1(t)Φ∗1, . . . ,

Im − KNs(t)Φ∗Ns) ∈ RmNs×mNs ,

B(t; x(t − 1)) := diag (K1(t), . . . , KNs(t)) ∈ RmNs×O,

e(t) := col(w∗1(t − 1), . . . , w∗Ns(t − 1)) ∈ RO,

where O varies according to the number of collective measurements
at each iteration.

Proof. From (28), notice that:

Θ̃i(t) = [Im − Ki(t)Φ∗i]Θ̃i(t − 1)+ Ki(t)w∗i(t − 1). (45)

The rest of the proof is straightforward and so is omitted. �
Two lemmas to validate the regularity conditions C1–C11 will
be presented under the following assumptions:
M1: Each agent collects a number s ≥ m of measurements at

locations {νk}sk=1 from itself and neighbors so that
s∑
k=1

φ(νk)φ
T(νk) � 0,

wherem is in (10).
M2: The artificial potential force and the adjacency matrix are

continuously differentiable with respect to q and derivatives
are bounded.

M3: The projection algorithm (39) is applied to the coordination
algorithm (36). Let D in (39) be a convex and compact set
defined by D :=MNs

×Mp, whereMp := [pmin, pmax]2Ns .

Remark 6. M1 can be viewed as a persistent excitation condition
in adaptive control (Åström & Wittenmark, 1995). M2 can be
satisfied, for instance, see (8) and Olfati-Saber (2006). M3 is used
to satisfy the boundedness condition for the ODE approach and
it is also very useful to model the realistic control saturations for
mobile vehicles.

Lemma 7. Let Ai(t) := Ai(t; x(t−1)). Under M1 andM3, thematrix

Ai(t) := [Im − Ki(t)Φ∗i] (46)

is a positive definite matrix for all i ∈ I and t ∈ Z≥0. All eigenvalues
of Ai(t) in (46) are non-negative and strictly less than 1, i.e.,

λmin(Ai(t)) > 0, λmax(Ai(t)) < 1.

Hence, the induced matrix 2-norm of Ai(t) is strictly less than 1:

‖Ai(t)‖ < 1, ∀i ∈ I, ∀t ∈ Z≥0. (47)

Proof. By the definition of Ai, it is a symmetrical matrix.

Ai(t) = Im − Pi(t)ΦT∗i(Is + Φ∗iPi(t)Φ
T
∗i)
−1Φ∗i.

where Pi(t) � 0 is a positive definite matrix. From (28), notice that

Pi(t − 1)− Pi(t) � 0, Pi(t) = Ai(t)Pi(t − 1) � 0,

which implies that Pi(t − 1)(Im − Ai(t)) � 0.
Hence, we conclude that 0 ≺ Ai(t) = ATi (t) ≺ Im. Moreover,

since Ai(t) � 0, there exists a square root matrix F so that Ai(t) =
F TF and F = diag (

√
λ1, . . . ,

√
λm)R where R is the orthonormal

matrix and λ1 = λmax(Ai(t)) > λ2 > · · · > λm = λmin(Ai(t)) > 0.
Since Ai(t) = F TF ≺ Im implies that

√
λmax(F TF) < 1, we

have λmax(Ai(t)) = λmax(F TF) = ‖F‖2 < 1 and ‖Ai(t)‖ =√
λmax(ATi (t)Ai(t)) < 1. �

Lemma 8. Consider the transformed recursive algorithm after apply-
ing Lemma 5 under assumptionsM1–M3. Then the algorithm is sub-
ject to the regularity conditions C1–C11, and (MNs \ Z)×Mp ⊂ D ⊂
DR, whereMp = [pmin, pmax]2Ns and Z is the set defined by

Z :=

{
q ∈MNs

∣∣ ∑
j∈{i}∪N (i,q)

φ(qj)φT(qj) 6� 0, ∀i ∈ I

}
. (48)

Moreover, f (x) in (40) of Corollary 4 is given by

f (x) =
[

p
−∇U(q)− (L̂(q)+ Kd)p−∇C(q)

]
, (49)

where C(q) ∈ R≥0 is the collective performance cost function defined
by

C(q) := k4
∑
i∈I

[µmax − µ(qi)], (50)

here k4 ∈ R>0 is a gain factor and µmax ∈ R>0 is the maximum of
the field µ.
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Proof. Verifications of C1–C11 are as follows:

• C1: This is satisfied by the measurement noise assumption in
(16) and (17) with Lemma 7 under M1 and M3.
• C2: This is satisfied due to the assumption M2 and smooth and
bounded derivatives of radial basis functions in ∇Ĉ(ϕ, q) with
respect to q.
• C3: A(t; ·) and B(t; ·) in (44) are functions of smooth radial basis
functions, therefore, they are smooth in DR.
• C4: We use the similar argument used in Brus (2006).

Notice that:

ϕ(t)− ϕ̄(t) = A(t; x)|x̃(t−1)(ϕ(t − 1)− ϕ̄(t − 1))

+
∂g
∂x

∣∣∣∣ x̃(t−1)
ϕ̃(t−1)

(x(t − 1)− x̄)

=
∂g
∂x

∣∣∣∣ x̃(t−1)
ϕ̃(t−1)

(x(t − 1)− x̄)

+

t−n∑
i=2

∂g
∂x

∣∣∣∣ x̃(t−i)
ϕ̃(t−i)

(x(t − i)− x̄)

(
i−1∏
j=1

A(t; x)|x̃(t−j)

)
,

where the mean value theorem was used for a smooth g
with respect to x and ϕ. [x̃T(s), ϕ̃T(s)]T is a point between
[xT(s), ϕT(s)]T and [x̄T(s), ϕ̄T(s)]T. From Lemma 7 underM1 and
M3, we have:

‖A(t; x)|x̃‖ ≤ 1− δ < 1, ∀t.

Therefore we obtain:

‖ϕ(t)− ϕ̄(t)‖ ≤

∥∥∥∥∥ ∂g∂x
∣∣∣∣ x̃(t−1)
ϕ̃(t−1)

∥∥∥∥∥ ‖x(t − 1)− x̄‖
+

t−n∑
i=2

(
i−1∏
j=1

‖A(t; x)|x̃(t−j)‖

∥∥∥∥∥ ∂g∂x
∣∣∣∣ x̃(t−i)
ϕ̃(t−i)

∥∥∥∥∥ ‖x(t − i)− x̄‖
)

≤

t−n∑
i=1

(1− δ)i−1 max
n≤s≤t

∥∥∥∥∂g∂x (s)
∥∥∥∥ maxn≤s≤t

‖x(s)− x̄‖

<
1
δ
C max
n≤s≤t
‖x(s)− x̄‖ < C max

n≤s≤t
‖x(n)− x̄‖.

• C5: For a fixed x̄, notice that:

ϕ̄i(t, x̄) =
t∏

k=s+1

A(k; x̄)ϕ̄i(s, x̄)

+

t∑
j=s+1

[
t∏

k=j+1

A(k; x̄)

]
B(j; x̄)e(j), i ∈ {1, 2}.

Under M1 and M3, ‖A(k; x̄)‖ < λ(x̄) for all k ∈ {s + 1, . . . , t},
where λ(x̄) < 1. Hence we have:

‖ϕ̄1(t, x̄)− ϕ̄2(t, x̄)‖ < λt−s(x̄)‖ϕ̄1(s, x̄)− ϕ̄2(s, x̄)‖,

for all x̄ ∈
(
MNs \ Z

)
× Mp ⊂ DS , where Z is the set defined

in (48).
• C6: Elements of Q in (43) are deterministic functions of x ∈ DR
except for∇Ĉ(ϕ(t), q). Thanks to M1 and (27), for a fixed q, we
have

lim
t→∞

E(∇Ĉ(ϕ(t), q)) = ∇C(q),

which proves C6 and (49) simultaneously.
• C7: This is satisfied due to the measurement noise assumption
in (16).
• C8, C9, C10, C11: These are satisfied by the time-varying gain
sequence defined in (32). �
Finally, the global performance cost that sensing agents to
minimize, is defined as

V (q(τ ), p(τ )) := C(q(τ ))+ U(q(τ ))+
pT(τ )p(τ )
2

, (51)

where C(q) is a cost function of q to make agents to trace peaks
of the field. U(q) is obtained from (9) and is a cost function of q to
enforce swarming behavior, obstacle avoidance, and artificial walls
etc. to themulti-agent system. The last term on the right-hand side
of (51) is the kinetic energy of the multi-agent system and is a cost
function of p alone.
We have the following theorem regarding the convergence

properties of the proposed multi-agent system.

Theorem 9. For any initial state x0 = col (q0, p0) ∈ D, where D
is a compact set as in (39), we consider the recursive coordination
algorithm obtained by Lemma 5 under conditions from Lemma 8. Let
DA := {x ∈ D | V (x) ≤ a} be a level-set of the cost function in (51).
Let Dc be the set of all points in DA, where d

dτ V (x) = 0. Then every
solution starting from DA approaches the largest invariant set DM
contained in Dc with probability one as t →∞, or {x(t)} has a cluster
point on the boundary ∂D of D. Moreover, if {x(t)} does not have a
cluster point on ∂D and (L̂(q) + Kd) � 0, ∀x ∈ D, then any point
x? = col(q?, 0) in DM is a critical point of the cost function V (x),
which yields either a (local) minimum of V (x) or an inflection point,
i.e.,

∂V (x)
∂x

∣∣∣∣
x=x?
= 0.

Proof. From Lemmas 5 and 8 and Corollary 4, the asymptotic
trajectory x(τ ) := col(q(τ ), p(τ )) ∈ DR is given by the associated
ODE

dx(τ )
dτ
= f (x(τ )). (52)

Taking the derivative of V (x(τ )) in (51) with respect to τ and using
(52), we obtain

dV (x(τ ))
dτ

=

(
∂V (x)
∂x

)T
f (x(τ ))

=

[
∇U(q(τ ))+∇C(q(τ ))

p(τ )

]T
×

[
p(τ )

−∇U(q(τ ))−∇C(q(τ ))− (L̂(q(τ ))+ Kd)p(τ )

]
= −pT(τ )(L̂(q(τ ))+ Kd)p(τ ) ≤ 0. (53)

DA := {x ∈ D | V (x) ≤ a} is a bounded set with d
dτ V (x) ≤ 0 for all

x ∈ DA as in (53), which is a positively invariant set. By LaSalle’s
invariant principle and Corollary 4, x(t) approaches the largest
invariant set DM contained in Dc given by{
x(τ ) | V̇ (x(τ )) = −pT(τ )(L̂(q(τ ))+ Kd)p(τ ) = 0

}
, (54)

with probability one as t →∞.
If (L̂(q) + Kd) � 0 ∀x ∈ D, from (54), any point x? in DM is

the form of x?(t) = col(q?(t), 0). Moreover, from (49), we have
q̇?(t) ≡ 0 and 0 ≡ −∇U(q?) − ∇C(q?), which verifies that x? is
a critical point of the cost function V (x). Hence this completes the
proof. �
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Table 1
Parameters in the simulation.

Parameters Values

Number of agents Ns 25
Number of basis functionsm 25
Surveillance regionM [−5, 5]2
(d, d0, d1) (0.6, 1.5d, 3.5d)

(0.4, 1.62d, 3.5d)
Transmission range r 4d
Noise levelW 1
(k1, k2, k3, k4) (0.1, 10, 0.1, 0.1)
Kd I2Ns ; 0.1I2Ns ; 02Ns
Saturation limit D [−5, 5]2Ns ×

[−1, 1]2Ns
γ (0) 0.2
Θ(0) 0m×1
P(0) 3Im

a b

Fig. 5. Trajectories of twenty five learning agents for d = 0.6,W = 1 andKd = I2Ns ,
at iteration times t = 40 (a) and t = 200 (b) under the projection algorithm. The
estimated field by agent 1 is shown as a background in colors. Red color denotes
the highest scalar value while blue color represents the lowest value. Agent 1 is
plotted as a green dot. Thin contour lines represent the error field between the true
field and the estimated field. (+) and (o) represent, respectively, initial and final
locations. Solid lines represent trajectories of agents.

5. Simulation results

We applied the proposed multi-agent system to static fields
µ(s), which are represented by twenty five radial basis functions,
as depicted in the left side of Fig. 6 (uni-modal) and Fig. 8 (bi-
modal). Each agent updates the estimated field for the coordination
once per iteration. Twenty five agents were launched at random
positions away from the maximum of the field in the simulation
study. Parameters used for the numerical evaluation are given in
Table 1. Simulation results are evaluated for different parameters
and conditions.

5.1. Standard conditions

We consider the proposed multi-agent system under the stan-
dard operating conditions (used in Theorem 9), which include the
projection algorithm defined in (39), velocity feedback (Kd � 0
as defined in (43)), and an artificial potential wall. Fig. 5(a) shows
that the recursively estimated field by agent 1 at the iteration time
t = 40 under the noise level of W = 1. The swarming agents
have the equilibrium distance of d = 0.6 as defined in (7). The es-
timation error field is also shown with colored contour lines as in
Fig. 5(a). Fig. 5(b) illustrates the estimated field by agent 1 at iter-
ation time t = 200. As shown in Fig. 5(b), twenty five swarming
agents have located the maximum point of the field successfully.
The right side of Fig. 6 shows the root mean square (RMS) values
of the spatially averaged error field achieved by all agents with re-
spect to the iteration time. All agents managed to bring the RMS
values of the estimation error down around 2 after 150 iterations.
Fig. 6. A uni-modal field is considered as a true field (left). The root mean square
(RMS) values of the spatially averaged error field achieved by all agentswith respect
to the iteration number (right). Parameters are d = 0.6,W = 1, and Kd = I2Ns , and
the projection was used.

a b

Fig. 7. The proposed agents are splitting into two groups for multi-modes under
standard conditions. The estimated field by agent 1 is shown as a background in
colors. Thin contour lines represent the error field between the true field and the
estimated field.

Fig. 8. A bi-modal field is considered as a true field (left). The root mean square
(RMS) values of the spatially averaged error field achieved by agent 1 with respect
to the iteration number for the bi-modal field of interest (right).

With a bit higher damping coefficients contained in Kd = I2Ns , the
rate of convergence to the maximum point was slow. Hence, the
group of agents does not showmuch overshoot and oscillatory be-
havior around the maximum point. Agents converge to a configu-
ration near the maximum point as t →∞.
The proposed multi-agent system with a smaller communica-

tion range and Kd = 02Ns is applied to a bi-modal static field, which
is shown in the left side of Fig. 8. Fig. 7 reminds of the fact that
the proposed agents can split into different groups according to the
configuration of the global network cost function V defined in (51).
It is straightforward to understand that agent 1 does not have in-
formation on the other mode located at the upper-right side of the
surveillance region, which results in higher RMS estimation error
values plotted in the right-hand side of Fig. 8 as compared to those
for the previous case (Fig. 6).
Fig. 9 illustrates a case without communication and the swarm-

ing capabilities of agents. Only a couple of agents manage to
approach themaximumpointwith slowconvergence rates as com-
pared to the previous case in Fig. 5. The lowest RMS value of the
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Fig. 9. Trajectories of agents without communication and the swarming algorithm
for d = 0.6,W = 1, and Kd = I2Ns , and the projection was not used.

a b

Fig. 10. Trajectories of agent 1 (green dot) with a faulty sensor and all other agents
for d = 0.6, W = 1 and Kd = I2Ns , at iteration times t = 40 (a) and t = 200
(b) under the projection algorithm. The estimated field by agent 1 is shown as a
background in colors.

Fig. 11. The root mean square (RMS) values of the spatially averaged error field
achieved by agent 1 with a faulty sensor (red-solid line) and all other agents with
respect to the iteration number.

estimation error achieved by agents was about 6. This simula-
tion clearly justifies the usage of the communication network and
swarming algorithms in the proposed multi-agent system.
We now consider a case in which agent 1 has a faulty sensor,

e.g., the measurement value of agent 1 is a constant value. Fig. 10
depicts a typical collective behavior of agent 1 with a faulty sen-
sor and all other agents for the same uni-modal true field shown in
the left side of Fig. 7. In this simulation, we consider that the faulty
sensor of agent 1 produces a higher value, e.g., y(q1(t)) = 10 for
all t ∈ Z≥0, which gave us most detrimental effect to the behavior
of the multi-agent system. This consistently wrong measurement
for agent 1 made its estimated field far away from the true field
(Fig. 11) and misguided agent 1 to a wrongfully estimated maxi-
mum point by agent 1 (Fig. 10). In all simulations, all other agents
using our algorithm except for agent 1 seem to be able to locate the
a b

Fig. 12. Trajectories of agents for d = 0.6, W = 1, and Kd = 02Ns , and the
projection was used.

Fig. 13. The group disagreement function ΨG(p(t)) with respect to the iteration
number. Parameters are d = 0.6, W = 1, and Kd = 02Ns , and the projection was
used.

peak of the true field as typically shown in Fig. 10. In general, the
robustness of themulti-agent systemwith respect to faulty sensors
will decreases as the number of faulty sensors increases.

5.2. Without the velocity feedback

We consider a case without the velocity feedback (i.e., Kd =
02Ns ) for the uni-modal field of interest. Without the velocity
feedback, there will be no dissipative terms once the consensus
of velocities of agents is achieved, which explains the oscillatory
behavior of agents in Fig. 12. The group disagreement function
ΨG(p(t)) = 1

2p
T(t)L̂(q(t))p(t)with respect to the iteration number

is shown in Fig. 13.
We also consider a case without both the velocity feedback and

the projection algorithm (i.e., no saturations on both positions and
velocities) for the bi-modal field of interest. In this simulation,
agents happened to discover two maximum points of the bi-
modal field as depicted in Figs. 14 and 15. The group disagreement
function and convergence rate of the agents are illustrated in
Fig. 15. In this simulation, the artificial potential wall prevents
agents from going outside of the compact surveillance regionM.

5.3. Without the artificial potential wall

Finally, we consider a case without the potential wall and with
the projection algorithm for the uni-modal field of interest. In
addition, we relocate the maximum of the field at the boundary
of the surveillance region. As can be seen in Fig. 16, agents with
Kd � 0 have located the maximum point of the field and converge
to a configuration around the boundary of the surveillance region.
The projection algorithm ensures that agents stay inside of the
compact setM.
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a b

Fig. 14. Trajectories of agents for d = 0.6, W = 1, and Kd = 02Ns , and the
projection was not used.

Fig. 15. The group disagreement function ΨG(p(t)) with respect to the iteration
number (left). The root mean square (RMS) values of the spatially averaged error
field achieved by agent 1 with respect to the iteration number (right). Parameters
are d = 0.6,W = 1, and Kd = 02Ns , and the projection was not used.

a b

Fig. 16. The projection algorithm guarantees that agents are inside of the compact
surveillance region M := [−5, 5]2 even without the artificial potential wall U2
which pushes agents back intoM when they approach the boundary ofR.

6. Conclusions

This paper presented a novel class of self-organizing sensing
agents that form a swarm and learn through noisy measurements
collectively from neighboring agents to estimate an unknown field
of interest for gradient climbing. The proposed cooperatively learn-
ing control consists of motion coordination based on the recur-
sive estimation of an unknown field of interest with measurement
noise. Our strategy of the cooperative learning control can be ap-
plied to a large class of coordination algorithms for mobile agents
in a situation where the field of interest is not known a priori and
to be estimated. We have shown that the closed-loop dynamics of
the proposed multi-agent system can be transformed into a form
of a stochastic approximation algorithm. Hence, the convergence
properties of the proposed multi-agent system were analyzed us-
ing the ODE approach and verified by a simulation study with re-
spect to different parameters and conditions. Simulation results
for the proposed multi-agent system and learning agents without
communication and the swarming effort clearly demonstrated the
advantage of the communication network and the swarming effort.
Motivated by techniques developed in this paper, we are currently
developing a systematic way that allows us to efficiently design
and analyze a class of practical algorithms for distributed learning
and control of multi-agent systems. A possible future work is to
investigate how mixture of heterogeneous learning agents can be
optimally coordinated by consensus type algorithms for learning
unknown fields.
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