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Learning Coverage Control of Mobile Sensing Agents
in One-Dimensional Stochastic Environments

Jongeun Choi, Member, IEEE, and Roberto Horowitz, Member, IEEE

Abstract—This technical note presents learning coverage control of
mobile sensing agents without a priori statistical information regarding
random signal locations in a one-dimensional space. In particular, the
proposed algorithm controls the usage probability of each agent in a
network while simultaneously satisfying an overall network formation
topology. The proposed control algorithm is rather direct, not involving
any identification of an unknown probability density function associated to
random signal locations. Our approach builds on diffeomorphic function
learning with kernels. The almost sure convergence properties of the pro-
posed control algorithm are analyzed using the ODE approach. Numerical
simulations for different scenarios demonstrate the effectiveness of the
proposed approach.

Index Terms—Coverage control, learning with kernels, mobile sensing
agents.

I. INTRODUCTION

Coordination of autonomous agents and distributed mobile sensor
networks have increasingly drawn the attention of engineers and scien-
tists [1]–[6]. Mobile sensing agents form an ad-hoc wireless commu-
nication network in which each agent operates usually under a short
communication range, a limited memory storage, and limited computa-
tional power. Sensing agents are often spatially distributed in an uncer-
tain surveillance environment; can sense, communicate, and take con-
trol actions locally in order to achieve a global goal. One of the chal-
lenging problems in the coordination of sensing agents is to allocate
coverage regions to agents optimally, which will be referred to as the
coverage control problem. In [2], a distributed coordination algorithm
for sensing agents was derived and analyzed based on the classic Lloyd
algorithm [7], which requires the knowledge of the probability density
function associated to random signal locations. However, in practice,
the exact knowledge of a statistical distribution of signal locations in-
cluding its support may not be available a priori. This coverage control
strategy is extended by [8] using a deterministic adaptive control ap-
proach assuming that the true density related to the cost function can be
measured by sensing agents. Dynamic vehicle routing problems were
studied in [4], [5], in which mobile agents in a fixed known convex re-
gion must visit event points generated by an (unknown) spatio-temporal
Poisson point process. Arsie and Frazzoli [5] introduced strategies to
minimize the expected time between the appearance of a target point
and the time it is visited by one of the agents. The policy was similar
to the MacQueen’s [9] learning vector quantization algorithm in that
it does not rely on the knowledge of the underlying stochastic process.
Due to recent advances in micro-electro-mechanical systems (MEMS)

Manuscript received December 10, 2008; revised August 05, 2009. First pub-
lished February 05, 2010; current version published March 10, 2010. Recom-
mended by Associate Editor M. Prandini.

J. Choi is with the Departments of Mechanical Engineering, and Electrical
and Computer Engineering, Michigan State University, East Lansing, MI
48824-1226 USA (e-mail: jchoi@egr.msu.edu).

R. Horowitz is with the Department of Mechanical Engineering, University
of California, Berkeley, CA 94720-1740 USA (e-mail: horowitz@me.berkeley.
edu).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2010.2040510

technology [10], each agent can afford a particular set of sensors among
different types. Measurements from heterogeneous sensors in different
locations will provide statistically rich information in the sense of re-
dundancy and complementarity [11], [12]. Such collective measure-
ments along with multisensor fusion algorithms [13] will improve the
performance of the sensor network significantly regarding estimation,
prediction and tracking of a process of interest. In [14], heterogeneous
robots with different configurations use their special capabilities col-
laboratively to accomplish localization and mapping tasks. Motivated
by current research trends and needs, we propose a class of self-orga-
nizing sensing agents with the following properties in a one-dimen-
sional space. First, a network of sensing agents should perform the
coverage control without the statistical knowledge of random signal
locations. Second, frequencies of random events or signal occurrences
covered by agents are to be controlled according to each agent’s lim-
ited capability and resources. To this end, we introduce a concept of
the usage frequency of an agent, which will be referred to as the usage
probability of the agent. Finally, the formation topology of the sensor
network should be controlled so that each sensing agent can select spe-
cific neighbors equipped with functionally complementary sensor con-
figurations with respect to its own configuration.

Standard notation is used throughout the note. Let , ��, ��,
��, and �� denote, respectively, the set of real, non-negative real,

positive real, non-negative integer, and positive integer numbers. The
positive definiteness (respectively, semi-definiteness) of a matrix � is
denoted by � � � (respectively, � � �). The relative complement
of a set � in a set � is denoted by � � � �� � � ��, where �� is
the complement of �. The derivative of a column vector � � � with
respect to a column vector � � � is defined by the matrix ����� �
��� whose ��� 	�th entry is given by ������� . Other notation will

be explained in due course.

II. PROBLEM STATEMENT

Consider 
 number of agents with a set of identities denoted by
� � ��� � � � � 
�. Let ����� be the location of agent  at time �. The col-
lection of agent’s locations is denoted by ���� � ������ 	 	 	 �����		 �
� . In each discrete time iteration � � ��, an event occurs at a

stochastic location, generated by the stationary random process � �

��
�� , where � � ������ �����  is the signal locational
space in which events or signals of interest occur. Each sensing agent
will detect an event or a signal and its corresponding location over the
surveillance region in charge. We assume that agent  takes charge of
measuring signals and getting necessary tasks done in its coverage re-
gion �� determined by the nearest neighbor rule [2]. The coverage
region �� is given by the Voronoi cell [15] of agent 

�� �� �� � ���
 �� � � ��
 ���� �� �� � (1)

where � 	 � is the Euclidean norm, and � is the location of the signal. For
the given configuration ���� and the signal location ����, the winning
index ��	� 	� � � � � � � is defined by

������� ����� �� 
�� ��
���

�����
 ������ � (2)

When there are multiple minimizers in (2), the function will select the
smallest index. Throughout the note, the winning index in (2) will be
often written as �������, or ���� for notational simplicity in different
contexts. The sequence ���� in (2) is then a random sequence with a
discrete probability distribution that is induced by the pdf �
 . A vector
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� � ��� � � � �� �� � �
�� is referred to as the usage probability distri-

bution whose elements are defined by the usage probabilities of agents

�� ��
���

�� �����

�������� ����� � 	� � 	� �	 � � (3)

where �

��� �� � 
. Hence, �� provides a direct measure of how
frequently agent 	 is being used.

Assume that there exists a cost function 
 of the sensor network,
which may be related to the functional lifetime, limited resources,
and/or capabilities of sensing agents. Suppose that 
 � �

�� � ��

is a function of the usage probability distribution �. Then, the optimal
(or target) usage probability distribution that minimizes 
 , will be
denoted by

�� � ���� � � � �
�
� �� � �

���

�

���

��� � 
� (4)

�� will be generated by (3) with the pdf �� and optimal locations1 of
agents, denoted by ��� � ���� � � � �

�
� �� � �� . The problem is then

formulated as follows.
Problem: Consider the random variable of signal locations gener-

ated by a pdf �� . We assume that �� is continuous and its support
is connected and finite. However, �� and its support are not known a
priori. Assume that agents sense signals and their locations based on
the nearest neighbor rule in (1). For a given �� in (4), design a learning
coverage algorithm that coordinates sensing agents to achieve the fol-
lowing asymptotic properties:

��
	��

�������� � ��� � �	 � ��

������� �� ��
	��

����� � ��
	��

����� � � � � � ��
	��

������ (5)

Remark 1: The constraint on the formation order of agents in (5)
will predecide the neighbors of each agent, since some agents prefer
particular agents to be its neighbors among agents equipped with het-
erogeneous sensing devices.

III. DIFFEOMORPHISM LEARNING WITH KERNELS

In this section, we explain a diffeomorphism that maps a domain
containing the indices of agents to the signal locational space. This map
plays a central role in providing a structure in our learning coverage al-
gorithm. We introduce a fictitious random sequence  � ����	 


, where 	 � ����� ��	� is a specified finite open interval. We set
	 � �
��� � � 
���, so that � 
 	 . Let � � 	 � � be a mapping
from 	 to the locational space � . We now assume that � is actually a
diffeomorphic function of , i.e., � � 	 ��� is a differentiable bijec-
tion and has a differentiable inverse such that the time samples of the
locational random variable, ����, are generated by ���� � ������.
Thus, the pdf of , �
 � 	 �� ��, is given by

�
�� �
��

�
�� ����� ��� ���  � 	 � (6)

The diffeomorphism � � 	 ��� , induces the pdf �
 from the un-
known pdf �� via (6). This map will be subsequently referred to as the

1The map from a signal location � to the location of the responsible sensing
agent � can be viewed as a quantizer in quantization theory [7]. � must be
produced by a quantizer with an optimal location codebook vector �� .

reference or the target map. Since � � 	 � � is a diffeomorphism,
the collection of optimal sensor locations in (5) becomes

��� � ���� � � � �
�
� �� � ���
� � � � ������ � � � (7)

Suppose that the target map ��� can be obtained by solving an in-
tegral equation of the first kind with a known smooth scalar symmetric
kernel ���� �� � 	 � � 	 ��� �� and unknown influence coefficients
��� ’s � that satisfy

��� �
���

��� �� ��� (8)

where

�� � ���� 
�� � � � � � ��� �

	 � �
�


�
� ��� 
��� ���




�
(9)

for some integer 	 � � � � . To obtain a distributed coordination
algorithm, the support of the kernel has to be finite. We assume that
the kernel in (8) is a radial basis function that is (at least) �� differ-
entiable with a compact support. Then the resulting ��� is a �� dif-
feomorphism with an appropriate set of ��� . The elements of the vector
�� � ����
��� � � � �

�
���� � ��� are the unknown optimal influ-

ence coefficients that satisfy ��� � ��	� for all 	 � � . Hence, a logical
approach to deal with our problem is to coordinate sensing agents ac-
cording to the diffeomorphism function learning with kernels. The time
varying outputs of the learning algorithm will directly update the loca-
tions of agents given as

����� � ��	� ��� �	 � �� (10)

where ��� �� is produced by the estimates of influence coefficients
������

��� �� �
���

��� ��������� ������  � 	
�� (11)

Here ��� ��� in (11) is a parameterized family of smooth functions
that contains the diffeomorphism of interest in (8). For given time �, we
define the extended locational space�� by the union of� and the range
space of ��� �� (denoted by ���	 �� ��), i.e., �� �� � � ���	 � ���.
We define the influence coefficient estimate vector by

����� �� ����
������ � � � ��������� � ���� (12)

Equation (10) can then be rewritten as

����� �� ���
��� � � � �������� � ������ � ���

where � � 
�����
���� is the kernel matrix with ��� �� element
���� �� ������ ����, which must be rank����. For the function
��� �� in (11) to converge to an orientation preserving diffeomorphism,
it is necessary to have

��
	��

���� �� � ��
	��

�

�
��� �� � 	�

Define the vector of partial derivatives of ��� �� with respect to  eval-
uated at 	 � �� by

������ � � �����
���� �� � � � ���� ��� �� ��

�� ������ (13)
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where �� � ������������� is the matrix whose ��� �� element is
given by � �

��� �� ����� �����������������. � (respectively � �)
is the collection of kernel vectors 	� (respectively 	�� ) as defined by

�	 � � 	������ � � � 	��� � �

� �	 � � 	������� � � � 	���� � 


Therefore, for � � �
, we have

���� � 		� �����

����� �
����� �

��
���

� 	�	� ����


IV. LEARNING COVERAGE CONTROL

The following discrete-time control system describes the motion of
mobile agents:

���� 	� � ���� � ����� �� � �

 (14)

where ���� and ���� are, respectively, the position and the control of
agent � at time index  � ��. For a sampled input location ��� at
time , the control of each sensing agent will have the form of

���� � ���		� ��������� �������� �� � �

 (15)

where��� is the monotonically decreasing gain sequence often used in
stochastic approximation theory [16], [17] and it satisfies the following
properties:

��� � 
�

�

���

��� ���

�

���

���� ��
 (16)

This gain sequence ��� is introduced to guarantee that sensing agents
converge to an optimal configuration in spite of stochastic locational
signals. This sufficiently slow vanishing rate of the sequence is a key
mechanism to ensure the almost sure convergence of states by slowly
attenuating the effects of randomness [16], [17]. ������ and ������ in
(15) will be provided shortly. To parameterize a family of slopes of
���� � properly at the boundary of 	 , agent 1 (respectively, agent
� ) needs to memorize and update the positions of fictitious agents
���� 	� � � � 
 (respectively, agents �� �	� � � � �� ���) according
to (15). These fictitious agents do not have sensors and are only pas-
sively updated by either agents 1 or � .

We first define some notation. Let ��� and �� be the indices associ-
ated to the extremum values of 
�� � � � �� defined, respectively, by

��� �� �� ���
���

�� � �� �� �� ���
���

�� 
 (17)

The indices of local neighbors in �
, �� � �  � and � � �  � are
defined, respectively, by

����� �� �� ���
����	�



��� � ���� � ������� �� �� � ��� (18)

���� �� �� ���
����	�



��� � ���� � ������� �� �� � �� 
 (19)

The first term ���� in (15) is designed for the usage probability

���� � � � �� to track the target usage probability 
�� � � � ��.
���� is given by

������ � ��
���

�������
�

�
����

(20)

where �� � 
 is a gain and ����� is the target usage probability of the

winning index � at time  given by (2) and (4). The function ���
����
� �

�  ���� is defined by

���
����
� ��

�� �� �

�
� if � � �� ���� �� ,

�� �� �

�
� if � � ��,

�
�� �� �

�
� if � � ���.

(21)

The second term ���� in (15) controls the orientation of the map ���� �
in (11), and it is given by

������ �� �� 	
�
���� ������ � ������

������������� 	

�
����

(22)

where �� � 
 is a gain and ������ � ������� � as defined in (13).
������� is defined by

������� ��

	� if � � 
,

� if � � 
,
�	� if � � 
.

To calculate ������ in (22), agent � should update the slope of the
map ����� at � � � and keep the updated slope for the next iteration.
Hence, for agent �, the proposed learning coordination algorithm is
summarized as follows:

���� 	� � ���� � ���

� 		� ��������� �������� �� � �

�

����� 	� � ����� � ���

� 	��
	
��������� �������� �� � �
 (23)

Since �
�� � ����� and � is bijective, it is easy to see that the
overall dynamics of agents in (23) can be rewritten as

���� 	� � ���� � ������������ ������� (24)

where ���� is the influence coefficient estimate defined in (12). For con-
vergence analysis, we will consider the learning coordination algorithm
in the form of the centralized adaptation in (24).

V. THE MAIN RESULT

We use Ljung’s ordinary differential equation (ODE) approach de-
veloped in [16], [18] to analyze the convergence properties of our new
learning algorithm. Equation (24) can be expressed as

���� 	� � ���� � ���� �� ����� ���� (25)

where � �� ����� ���� �� ����������� ���� � ���������� ����. The
ODE associated to (25) is

����� � � ���� ������ � �����
� ������� �����

�
�

� ������� ������������ (26)

where ����� is kept constant at the frozen time � in the calculation of
�����
� ������� �����. Two of the nontrivial sufficient conditions for

the ODE [16] approach to be applicable are that� �� ��� �� must be Lip-
schitz continuous in �� and � (B.3 in [16]), and the Lipschitz constants
must be Lipschitz continuous in �� and � (B.4 in [16]). These conditions
are verified by the following Lemma.

Lemma 2: For the input signal�, let����� �� be the value determined
by (2) and ���� � that builds on �� as in (11). Given the function����� ��,
except for a set 
��� �� of measure zero, there exists a sufficiently small

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 30,2010 at 12:12:55 EDT from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010 807

� � � such that for any bounded ���� ��� and ��� ��, if ����� ����� � �
and ��� � ��� � � then ������� ���� ������ ���� � �.

Proof: See [19].
Following the ODE approach, we freeze the parameter ���� � at time

� and take the average of 	 ������� ��
�� over the random variable ��
�
as in (26). For this purpose, the winning index ���� in (2) will be rep-
resented as ���� �� which is a function of the random variable � and
the frozen time � (and �����). However, we will often omit � for conve-
nience. Even though we sample the random variable ��
�, we take av-
erage with respect to the random variable �, using the reference diffeo-
morphism ���� as in (6). For instance, we define ������� and �������,
respectively, by

������� ��
�

������� ���������

������� ��
�

������� ��������� (27)

We summarize sufficient conditions for the correct convergence of
the learning coverage control algorithm.

A.1 �� in (4), random signal locations��
� � � with an associated
unknown pdf �� , and the kernel function� in (11) are compatible
in the sense that the family of smooth functions in (11) contains
an optimal configuration in (7). Moreover, if ��� � �� �� � 	 ,
���� 
� is an orientation preserving map.
A.2 �� , �� , the kernel function�, �� in (20) and �� in (22) satisfy
that ���� 
� ������ for any ���� 
� � where ���� and ���� are
defined in (27).

Remark 3: In general, ����� for all � � 	 may be initially far away
from the support of the pdf �� . However, it is straightforward to see
that the algorithm attracts the agents into the support of the pdf �� .
Thus, in the following arguments, we assume that positions of winning
agents whose indices are not extremum values (� � 	����� ���) are
contained in the support of the pdf �� , i.e., �� � 	
������, where
� � 	����� ���.

For convergence analysis, we need to calculate changes in the usage
probability distribution ��� � � � 	 caused by changes in the influ-
ence coefficient vector �����. The relationship is elaborated in the fol-
lowing lemma.

Lemma 4: The time derivative of the usage probability distribution
������ is related to the time derivative of the influence coefficient vector
������ by

������ � ��� ������� ����� ���
�������
�

�
������ (28)

where �������
� is defined in (21) and ��� � � � 	 � �� is defined by

��� ���� �� ��

�� ����� if � � 	� ��� ���

��
� ��

�
� if � � ��,

��
� ��

�
� if � � ���.

(29)

Moreover, the approximation symbol used in (28) is replaced with an
equal sign for the case of uniform pdfs.

Proof: See [19].
We introduce our main result for the uniform pdf �� case.
Theorem 5: Consider the proposed learning coordination algorithm

in (23) under conditions A.1 and A.2 with a uniform pdf �� . Then the
locational vector ��
� of the sensing agents converges to an optimal
codebook vector ��� almost surely, satisfying (7).

Now we present the proof of our main result.
Proof: Define the functions �� � � � � by ����� ��

�� ���� 	 ���� ��� ��� � , where ��� is defined in (7) and

�� � � � 	 by ����� �� �� ������ ��� ��� � . Let us de-
fine the lower bounded functionals

� ������� �� ��������� � ����������

��������� �� ��
�

���
�

��
��
��

�
� ��

�����������������
�������

��������� ��
��
� �

����
� � ����
�
�

��
��
�

������ (30)

where ��� is defined in (29) and ���� � ������� is based on �����
in (10) and (11) given by (2). ��� is the predefined optimal usage target
probability distribution, as defined in (4). �� � � and �� � � are the
weighting gains.

Applying the ODE approach to (2), (20), (22), and (24), we obtain

������ � ���������������� (31)

where ������� and ������� are defined by (27).
Differentiating ��������� in (30) with respect to time � , and utilizing

(28) in Lemma 4, we obtain

���������� �
�

��
��

��

�

�����

��
��
��

�
� ��

�����������������
�������

� ���������
� ������� (32)

Taking the second partial derivative of ������ with respect to ��, we
obtain

�

���

�������

����
� � � ���� (33)

where ��� is the �th element of ��. As can be seen in (33), the second
derivative of������with respect to �� is a zero matrix, ������������� � �.
Taking the time derivative of ���������with respect to time � , ����������
is obtained by

�������������
�

�����

��
��
�

����
� �����
�

���������
��� � �����
��������

�
����������

������

�

�������
�

�������������
�

�������

(34)

The matrix of the second derivative of������with respect to �� is positive
semi-definite

��������

����
� ��

�

����
��
��
��
� ���������
��� �

�

�
�����

��
��
�

� � �� (35)

From (32) and (34), we have

���������� �
�������

���

�

������ � �������
� �������

���������� �
�������

���

�

������ � ����� ���������� (36)

From (30), (31) and (36), �� ������� can be represented as

�� ������� � ���������� � ����������

� � �������� � ��������
�� (37)
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From (37), �� ����� �� is negative semi-definite. Integrating (37) with
respect to time, for all � � �, � ����� ��� � ������� � �

�
�� ��������� .

This implies that � ����� �� � � �������, � ���� � ��, and ������ and
������ are bounded. Notice that ���� � ��. From (30) and (34), uti-
lizing Cauchy–Schwartz inequality we obtain

��������� � � ���
�
��������

�
������

���

�
���
� �������	 (38)

Thus, ������� � �� since ������ � ��. Now we obtain

������ � ��������� 	 �������� � ��	 (39)

From (36) we obtain

��������

��
�


�������


���

�

�������

��������

��
�


�������


���

�

������	

������, 
��������
��� and 
��������
��
� are bounded from (39), (33)

and (35). By differentiating ������ and �� ���� in (36) and (39), respec-
tively, with respect to time � , we can conclude that 
����� � �� and

� ��� � ��. Thus, �� ��� is uniformly continuous in time � . By Bar-
balat’s lemma [20], we conclude that

��
����

�� ��� � � ��
����

�������� 	 ��������
� � � 	�	 (40)

Due to the condition A.2, (40) implies that ������������� � �,
������������� � � 	�	 ������� can then be rewritten as

�
�������������� �

�

�����
�������
� �����

������
��

�
����
���

�� 	 ��
�

	
����
���

�� � ��
�

	 � � �

	
������
�����

�� � ����
�

	
����
���

��� � ����
�

	 (41)

Since �	 ’s in (41) are discretized radial basis kernels centered at � � 	 ,
from (41), we conclude that ������� � ������� � � and 
�� �
 �


�� �
�

 � � imply that the usage probability �	 in (3) is equal to the

target probability ��	 in (4) for all � � 	 , i.e., � � ��. ������� � �
along with ������� � � implies that �	 is monotonically non-de-
creasing and ���� �� is orientation preserving (A.1). By A.1, the loca-
tional vector ���� converges to an optimal codebook vector ��� almost
surely. This completes the proof of Theorem 5.

VI. SIMULATION RESULTS AND DISCUSSION

Numerical simulations were carried out for different pdfs ��� � and
target probability distributions ����. A total of 34 agents and 4 fictitious
agents �� � ��, as in (9) were used in all simulations. The local kernel
used in this simulation study is given by


��� �� �

�

�
�
�
������ ����� � if �� � �� � �,

���� ��� if � � �� � �� � ��,
�� if �� � �� � ��

(42)

where ���� �� is a ���� bump function that makes the kernel smoothly
diminish to 0, and �� � � � �� � � and ��  �  ��. A value
of � � �	� was used for the kernel given by (42). The initial posi-
tions of agents �	���’s were randomly distributed. The performance
of the proposed scheme for different situations will be analyzed in the
following systematic manner. We will compare the partitioning border

Fig. 1. Results for a uniform pdf � and a target usage probability � in (43).
(a) The analytically calculated border locations � (diamonds �) and border lo-
cations of agents ���� calculated from the new learning algorithm (pluses �)
after 20000 iterations. (b) The RMS error value between ���� and � v.s. itera-
tion time. The final RMS error value is 0.8185. (a) 20000 iterations (b) 20000
iterations.

vector ���� �� ������ � � � ��������� calculated from the locations of
agents at iteration time �, �
��� �� �
��� 	 �
�������� �� � 	 � ���,
with respect to the analytically calculated optimal border vector 2��

for the corresponding pdf �� and the target probability distribution ��.
The root mean square (RMS) error value between ���� and �� will be
computed. We will compare the usage probability distribution � with
respect to the target usage probability distribution �� in terms of the
Kullback-Leibler (KL) measure of cross-entropy between � and ��.
Since �	 is not available, it will be estimated by the following algo-
rithm: ��	��	�� � ��	���	��������	���	�	������, �� � 	� ��	��� �
� �� � 	� �

	�� ��	��� � �, where ���� is the winning index given
by (2), �
�� is the Kronecker delta function, and ���� is the stochastic
approximation gain introduced in (16). The KL measure between �� ��
���� � � � ��� �� and �� is given by ���� ��� � �

	�� ��	 �� ��	��
�
	 , where

 ���� ��� � �, and  ���� ��� vanishes if and only if �� � ��.
Consider a uniform pdf �� with ! � ���� ��� and the target proba-

bility distribution ���	 � � � 	� (see green circles in Fig. 2(a))

��	 ��
��� 		

��� 	 � � 	 	
���

���

���

��� 	�
��� 	 � � 	 �

���

� �� � 		 (43)

In this case, the border vector ���� of agents from the proposed al-
gorithm successfully converges to the analytically calculated optimal
border vector �� for �� and �� after 20000 iterations as depicted in
Fig. 1(a). The convergence rate in terms of the RMS error value be-
tween ���� and �� v.s. iteration time is plotted in a logarithmic scale to
magnify the transient behavior of the algorithm as shown in Fig. 1(b).
The final RMS error value between ���� and �� at � � ����� is 0.8185.

Fig. 2(a) depicts the estimated usage probability ��	 from the new
learning law. This plot shows that � � �� converges to �� defined in (43)
after 20000 iterations. Fig. 2(b) illustrates the KL measure between ��
and �� v.s. iteration time, showing that ���� �� 	�. as ����.

To test our algorithm to a nonuniform pdf �� , we consider a bimodal
mixture model with two normal components. The locational random
sequence ! is assigned to one of the two normal densities, each of

2Notice that for given � and � , only � can be determined uniquely.
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Fig. 2. Uniform pdf � : (a) The usage probability distribution estimate �� (solid
bars), and the target usage probability distribution � (green circles) in (43). (b)
The Kullback–Leibler (KL) measure of cross-entropy between �� and � v.s.
iteration time. (a) 20000 iterations (b) 20000 iterations.

Fig. 3. Bimodal mixture model distribution: (a) The usage probability distribu-
tion estimate �� (solid bars), and the uniform target usage probability distribution
� (green circles). (b) The KL measure of cross-entropy between �� and � v.s.
iteration time. (a) 20000 iterations (b) 20000 iterations.

which has a prior discrete probability �� or ��. The joint probability
density function of the random sequence � is given by

�� ������� ���� � �� �������� � �� �������� (44)

where �� � ���� ���
� is the sufficient statistics, �� ������ �

����
�
�	
����� ���� � is the �th conditional probability density

function, and �� � ��� and �� � ��� are the mixing probabilistic
weights. We used that �� � 	, �� � 
, �� � �	, and �� � � for
this case.

Consider the target probability distribution ���	 �  � �� (see green
circles in Fig. 3(a))

��	 ��
�� �
	

���
� � � � 	

���

���

���

�� �
�
���

� � � � �
���

� � � �� (45)

Fig. 3(a) depicts the estimated usage probability ��	 of the new
learning law, which shows that � 	 �� converges to �� in (45) after
20000 iterations. Fig. 3(b) also presents the KL measure between ��

and �� v.s. iteration time, validating that ���
 �� ���. as ��
�. In
this case, the final RMS error value between ���� and �� is 1.4105.

VII. CONCLUSION

A new formulation of learning coverage control for distributed mo-
bile sensing agents was presented. This new one-dimensional coordi-
nation algorithm enables us to control the agent’s usage probability and
a formation order for given unknown statistics of random signal loca-
tions. The almost sure convergence properties of the proposed coordi-
nation algorithm were analyzed using the ODE approach for random
signal locations with uniform pdfs. Successful simulation results for
cases with a uniform pdf and a bimodal mixture model demonstrated
the effectiveness of the proposed approach.
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