

Satellite Remote Sensing of Active Fires: Capabilities, Challenges, and Opportunities

Daniel Feldman FUEGO Meeting, October 16, 2018

EESA, Lawrence Berkeley National Laboratory

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

Satellite Remote Sensing Capabilities

- Numerous satellite assets that map the Earth from low-earth and geostationary orbit at wavelengths that provide information about active fires.
- Visible provides info on smoke, near-IR on fire power, mid-IR on hot spots.

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

Satellite Remote Sensing Coverage

• Often a mismatch between satellite coverage and active fire needs.

Sensor and additional web resources	Temporal resolution	Spatial resolution (km)	VIS-MIR bands (µm)	TIR bands (µm)
Advanced Along Track Scanning Radiometer	2 days	1.00	0.56, 0.66, 0.86, 1.6	3.7, 11, 12
http://www.le.ac.uk/ph/research/eos/aatsr/				
Advanced Land Imager	16 days	0.010-0.09	0.44, 0.48, 0.56, 0.64, 0.79,	
http://eo1.gsfc.nasa.gov/Technology/ALIhome1.htm			0.87, 1.25, 1.65, 2.23	
Advanced Spaceborne Thermal Emission and	16 days	0.015-0.09	0.56, 0.66, 0.82, 1.65, 2.17,	8.3, 8.65, 9.1,
Reflection Radiometer			2.21, 2.26, 2.33, 2.34	10.6, 11.3
http://asterweb.jpl.nasa.gov/				
Along Track Scanning Radiometer	3 days	1.00	0.55, 0.67, 0.87, 1.6	3.7, 10.8, 12
http://www.atsr.rl.ac.uk/				
Advanced Very High Resolution Radiometer	4 daily	1.10	0.63, 0.91, 1.61	3.74, 11, 12
http://www.nesdis.noaa.gov/				
Hot Spot Recognition Sensor System		0.37		3.8, 8.9
http://www.itc.nl/research/products/sensordb/				
getsen.aspx?name=HSRS				
Hyperion	16 days	0.03	[220 bands: 0.38–2.5 µm]	
http://eo1.gsfc.nasa.gov/technology/hyperion.html				
IKONOS	3 days	0.001-0.004	0.48, 0.55, 0.67, 0.81	
http://www.spaceimaging.com/				
Indian Remote Sensing-1A,B	22 days	0.036-0.072	0.55, 0.65, 0.83	
http://www.isro.org/				
Indian Remote Sensing-1B,C	24 days	0.023-0.188		
http://www.isro.org/				
Landsat 5, 7	16 days	0.015-0.09	0.48, 0.56, 0.66, 0.85,	11.5
http://landsat.gsfc.nasa.gov/			1.65, 2.17	
Moderate Resolution Imaging Spectroradiometer	4 daily	0.25-1.0	19 bands	16 bands
http://modis.gsfc.nasa.gov/				
Quickbird	1–5 days	0.001-0.004	0.48, 0.56, 0.66, 0.83	
http://directory.eoportal.org/pres_QUICKBIRD2.html				
VEGETATION	1 daily	1.15	0.55, 0.65, 0.84, 1.62	
http://www.spot-vegetation.com/				

Satellite Remote Sensing Products

- With multi-spectral imagery:
 - Straightforward to observe active fires, smoke as a snapshot with LEO, continuous with GEO.
 - Straightforward to observe burned area.

Andela et al, Science, 2017

Satellite Remote Sensing for Fire Forecasting

- Fire behavior models represent an important tool for technological fire forecasting.
- WRF-SFIRE and CAWFE are built on a well-known weather-forecasting framework.
- They specifically take into account the fact that fire and weather are coupled.
- Model inputs are critical.

Overview of the CAWFE modeling system.

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

BERKELEY LAP

The Fuel Moisture Frontier

- Reflectance spectra are readily observed but represent a convolution of canopy traits and fuel moisture content.
- Understory information is needed but unavailable from spectra.
- Vegetation indices are loosely related to fuel moisture.
- Microwave measurements are also hard to interpret.
- The challenge of fuel moisture remains.

Yebra et al, Rem. Sens. Env., 2013

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

Opportunities Abound

- The silo-ed traditional approach to forecasting fire behavior is insufficient.
 - This meeting would not be taking place if it were.
- Do we have enough pieces to solve this puzzle?
 - Weather forecasts are continuously improving.
 - Satellite data products are ever-expanding.
- Is it just a question of integrated existing datasets through assimilation and forecasting?
- Clearly, more information is needed to provide actionable data for addressing fires and fire risk.
- EESA has stood-up a capability for advanced vegetation modeling that can complement remote sensing with information that is not currently available.

David Rumsey Map Collection

