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a b s t r a c t

In this work, we provide an introduction to an emerging field which has recently received considerable
attention, namely the analysis and modeling of swarms. In a very general sense, the term swarm is usually
meant to signify a group of objects (agents) that interact with one another and have a collective goal.
Point-mass, particulate-like models are frequently used to simulate the behavior of groups comprised
of individual units whose interaction are represented by inter-particle forces. The interaction ‘‘forces”
can represent, for example in the case of Unmanned Airborne Vehicles (UAVs), motorized propulsion aris-
ing from inter-vehicle communication and then actuation resulting in thrust. For a swarm member, these
forces have two main components, attraction and repulsion, with the fellow swarm members and the
surrounding environment. This work develops and investigates (1) basic models of such systems, (2)
properties of swarm models and (3) numerical algorithms, in particular temporally adaptive methods,
for swarm-like systems.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

It has long been recognized that interactive cooperative behav-
ior within biological groups or ‘‘swarms” is advantageous in avoid-
ing predators or, vice versa, in capturing prey. For example, one of
the primary advantages of a swarm-like decentralized decision
making structure is that there is no leader and thus the vulnerabil-
ity of the swarm is substantially reduced. Furthermore, the decision
making is relatively simple and rapid for each individual, however,
the aggregate behavior of the swarm can be quite sophisticated.

The modeling of swarm-like behavior has biological research
origins, dating back at least to Breder [14]. It is commonly accepted
that a central characteristic of swarm-like behavior is the tradeoff
between long-range interaction and short-range repulsion be-
tween individuals. Models describing clouds or swarms of parti-
cles, where their interaction is constructed from attractive and
repulsive forces, dependent on the relative distance between indi-
viduals, are commonplace. For reviews, see Gazi and Passino [29],
Bender and Fenton [8] or Kennedy and Eberhart [59]. The field is
quite large and encompasses a wide variety of applications, for
example, the behavior flocks of birds, schools of fish, flows of traffic
and crowds of human beings, to name a few. Loosely speaking,
swarm analyses are concerned with the complex aggregate behav-
ior of groups of simple members, which frequently are treated as
particles (for example in Zohdi [87]).

A central objective of the present work is to provide basic mech-
anistic models, and numerical solution strategies for the direct
ll rights reserved.
simulation of the motion of swarms that can be achieved within
a relatively standard computing equipment. Although the ap-
proach taken in the present work is based on mechanical force
interaction, it is important to mention that there exist a large num-
ber of what one can term as ‘‘rule-driven” swarms, whereby inter-
action is not governed by the principles of mechanics but by
proximal instructions such as: ‘‘if fellow swarm member gets close
to me, attempt to retreat as far as possible” or ‘‘follow the leader”,
or ‘‘stay in clusters”, etc. Many species, such as ant colonies [12],
exhibit foraging-type behavior, in addition to the trail-laying-
trail-following mechanism for finding food sources. During the
search for food, they deposit a chemical substance, called phero-
mone, which decays over time. Fellow foragers (swarm members)
detect and follow paths with a high pheromone concentration,
i.e. where the food source is highly concentrated. Although this
type of model can be useful in some applications, it will not be dis-
cussed in this work. Recent broad overviews of the field can be
found in Kennedy and Eberhart [59] and Bonabeau et al. [11]. For
instance, Dorigo et al. [24] presented an optimization algorithm
based on the foraging behavior of ants which basically used a com-
puter adaptation of the pheromone trail-laying-trail-following
method to mimic the behavior of ants to allow the ‘‘software ants”
to solve combinatorial problems such as the travelling salesman
problem.1 Bonabeau et al. [12] presented several such optimization
algorithms, each one influenced by another feature of biological
swarms. There are numerous other models in this direction to devel-
op optimization techniques [12,59], businesses planning [13], tele-
1 Finding the least expensive route for traveling to a number of given locations,
given the costs for each connection route.
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communication network design [12], mobile sensor networks [27],
robotics and vehicle navigation and military applications. Early ap-
proaches that rely on decentralized organization can be found in
Beni [9,15] and references therein. The related field of cooperative
robotics is quite large; references and attempts to overview and clas-
sify the numerous publications can be found in Dudek et al. [23], Cao
et al. [16], Liu and Passino [64]. Broader overviews on the topic of
swarm intelligence are given in Bonabeau et al. [12] and Kennedy
and Eberhardt [59]. In the references, a extensive list of works have
been included. While these rule-driven paradigms are usually easy
to construct, they are difficult to analyze mathematically. It is pri-
marily for this reason that a mechanical approach is adopted here.

Remark. There is an extremely close area to this field, namely the
study of ‘‘granular” or ‘‘particulate” media. Classical examples
include the study of natural materials, such as sand and gravel,
associated with coastal erosion, landslides and avalanches. A
concise introduction is given by Duran [25]. Many man-made
materials also fall within this class of problems. For general
overviews of granular media, we refer the reader to Jaeger and
Nagel [47,48], Nagel [67], Liu et al. [62], Liu and Nagel [63], Jaeger
and Nagel [49], Jaeger et al. [50–52], Jaeger and Nagel [53], the
extensive works of Hutter and collaborators: Tai et al. [80–82],
Gray et al. [33], Wieland et al. [85], Berezin et al. [10], Gray and
Hutter [34], Gray [35], Hutter [43], Hutter et al. [44], Hutter and
Rajagopal [45], Koch et al. [60], Greve and Hutter [36] and Hutter
et al. [46]; the works of Behringer and collaborators: Behringer [5],
Behringer and Baxter [4], Behringer and Miller [6] and Behringer
et al. [7]; the works of Jenkins and collaborators: Jenkins and Strack
[54], Jenkins and La Ragione [55], Jenkins and Koenders [56],
Jenkins et al. [57], the works of Torquato and collaborators:
Torquato [83], Kansaal et al. [58] and Donev et al. [18–22] and the
works of Zohdi and coworkers [86–97].
2. Basic modeling of ‘‘point-mass swarms

Throughout the analysis, the objects are assumed to be small
enough to be considered (idealized) as point-masses and that the
effects of their rotation with respect to their mass center is consid-
ered unimportant to their overall motion.

2.1. Notation

In this work, boldface symbols imply vectors or tensors. A fixed
Cartesian coordinate system will be used throughout this work. The
unit vectors for such a system are given by the mutually orthogonal
triad of unit vectors ðe1; e2; e3Þ. We denote the position of a point in
space by the vector r. In fixed Cartesian coordinates we have

r ¼ r1e1 þ r2e2 þ r3e3; ð2:1Þ

and for the velocity we have

v ¼ _r ¼ _r1e1 þ _r2e2 þ _r3e3; ð2:2Þ

and acceleration we have

a ¼ €r ¼ €r1e1 þ €r2e2 þ €r3e3: ð2:3Þ
2.2. A basic construction of a swarm

In the analysis to follow, we treat the swarm members as point-
masses, i.e. we ignore their dimensions.2 For each swarm member
(Np in total) the equations of motion are
2 The swarm member centers, which are initially non-intersecting, cannot intersect
later due to the singular repulsion terms.
mi€ri ¼ Wiðr1; r2; . . . ; rNp Þ; ð2:4Þ

where W represents the forces of interaction between swarm mem-
ber i and the target, obstacles, and other swarm members. We con-
sider the following decomposition of interaction forces:

Wi ¼ Wmm
i þWmt

i þWmo
i ; ð2:5Þ

where between swarm members (member–member)

Wmm
i ¼

XNp

j–i

amm
1 kri � rjkb

mm
1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

attraction

�amm
2 kri � rjk�bmm

2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
repulsion

0B@
1CA rj � ri

kri � rjk|fflfflfflfflffl{zfflfflfflfflffl}
nij ¼

def unit vector

0BBBBB@

1CCCCCA;
ð2:6Þ

where k � k represents the Euclidean norm in R3, and the normal
direction is determined by the difference in the position vectors
of the particles’ centers

nij ¼
def rj � ri

kri � rjk
: ð2:7Þ

Between the swarm members and the target we have (member–
target)

Wmt
i ¼ ðamtkri � Tkb

mt

Þ T � ri

kri � Tk ; ð2:8Þ

and for the repulsion between swarm members and the obstacles
(member–obstacle)

Wmo ¼ �
Xq

j¼1

ðamokri � Ojk�bmo

Þ Oj � ri

kri � Ojk

� �
; ð2:9Þ

where q is the number of obstacles and where all of the (design)
parameters, a’s and b’s, are nonnegative.

Remark 1. One can describe the relative contributions of repulsion
and attraction between members of the swarm by considering an
individual pair in (static) equilibrium

Wmm ¼ ðamm
1 kri � rjkb

mm
1 � amm

2 kri � rjk�bmm
2 Þ rj � ri

kri � rjk
¼ 0: ð2:10Þ

This characterizes a separation length scale describing the tendency
to cluster or spread apart

kri � rjk ¼
amm

2

amm
1

� � 1
bmm

1
þbmm

2 ¼def dmm
e : ð2:11Þ

If the distance by which the swarm members can communicate is de-
noted dcom, and dcom

6 dmm
e , then there will possibly be no interaction,

for example at static equilibrium.

Remark 2. The specific structure of the inter-particle forces cho-
sen is only one of many possibilities to model the interaction.
There are numerous other possibilities. The properties of this spe-
cific type of representation, such as the work expenditure, energy
and power are discussed in the appendix. There are a variety of
alternative forms available from the field of Molecular Dynamics
(MD), which is concerned with, typically, the calculation of ther-
mochemical and thermomechanical properties of gases, liquids
and solids by using models of systems of atoms or molecules
where each atom (or molecule) is represented by a material point
and is treated as a point-mass whose motion is described by the
Newton’s second law with the forces computed from a prescribed
potential energy function, VðrÞ;m€r ¼ �rVðrÞ (see Haile [37], for
example).
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2.3. Environmental damping

A source of damping for the system is from the (surrounding)
environment (for example, a fluid such as air). The simplest model
is of the form (for swarm member i)

Wenv
i ¼ �cenvðv i � venvÞ; ð2:12Þ

where v i is the velocity of the ith member and venv is the local
velocity of the ambient medium. Im summary, we have the follow-
ing forces acting on each member of the swarm:

W ¼ Wmm þWmt þWmo þWenv : ð2:13Þ

Remark. The problem of fully coupled (two-way) particle-fluid
interaction is beyond the scope of the present work. Generally, this
requires the use of staggering-type schemes [95,97].
3. Temporal discretization

We now specifically address the second-order systems of
interest.

3.1. Isolating a single particle

Each particle’s equation of motion is given by

m _v ¼ W; ð3:1Þ

where W is the force provided from interactions with other particles
the external environment. Expanding the velocity in a Taylor series
about t þ /Dt we obtain ð0 6 / 6 1Þ

vðtþDtÞ ¼ vðtþ/DtÞþ dv
dt

����
tþ/Dt

ð1�/ÞDtþ1
2

d2v
dt2

�����
tþ/Dt

ð1�/Þ2ðDtÞ2

þOðDtÞ3 ð3:2Þ

and

vðtÞ ¼ vðt þ /DtÞ � dv
dt

����
tþ/Dt

/Dt þ 1
2

d2v
dt2

�����
tþ/Dt

/2ðDtÞ2 þ OðDtÞ3:

ð3:3Þ

Subtracting the two expressions yields

dv
dt

����
tþ/Dt

¼ vðt þ DtÞ � vðtÞ
Dt

þ bOðDtÞ; ð3:4Þ

where bOðDtÞ ¼ OðDtÞ2 when / ¼ 1
2. Inserting this into the equation

of motion yields

vðt þ DtÞ ¼ vðtÞ þ Dt
m

Wðt þ /DtÞ þ bOðDtÞ2: ð3:5Þ

Note that adding a weighted sum of Eqs. (3.2) and (3.3) yields

vðt þ /DtÞ ¼ /vðt þ DtÞ þ ð1� /ÞvðtÞ þ OðDtÞ2; ð3:6Þ

which will be useful shortly. Now expanding the position of the
center of mass in a Taylor series about t þ /Dt we obtain

rðt þ DtÞ ¼ rðt þ /DtÞ þ dr
dt

����
tþ/Dt

ð1� /ÞDt þ 1
2

d2r

dt2

�����
tþ/Dt

ð1� /Þ2ðDtÞ2

þ OðDtÞ3 ð3:7Þ
and

rðtÞ ¼ rðt þ /DtÞ � dr
dt

����
tþ/Dt

/Dt þ 1
2

d2r

dt2

�����
tþ/Dt

/2ðDtÞ2 þ OðDtÞ3:

ð3:8Þ

Subtracting the two expressions yields

rðt þ DtÞ � rðtÞ
Dt

¼ vðt þ /DtÞ þ bOðDtÞ: ð3:9Þ

Inserting Eq. (3.6) yields

rðt þ DtÞ ¼ rðtÞ þ ð/vðt þ DtÞ þ ð1� /ÞvðtÞÞDt þ bOðDtÞ2 ð3:10Þ

and thus using Eq. (3.5) yields

rðt þ DtÞ ¼ rðtÞ þ vðtÞDt þ /ðDtÞ2

m
Wðt þ /DtÞ þ bOðDtÞ2: ð3:11Þ

The term Wðt þ /DtÞ can be approximated by

Wðt þ /DtÞ � /Wðrðt þ DtÞÞ þ ð1� /ÞWðrðtÞÞ; ð3:12Þ

yielding

rðt þ DtÞ ¼ rðtÞ þ vðtÞDt þ /ðDtÞ2

m
ð/Wðrðt þ DtÞÞ

þ ð1� /ÞWðrðtÞÞÞ þ bOðDtÞ2: ð3:13Þ

We note that

� When / ¼ 1, then this is the (implicit) Backward Euler scheme,
which is very stable (very dissipative) and OðDtÞ2 locally in time,

� When / ¼ 0, then this is the (explicit) Forward Euler scheme,
which is conditionally stable and OðDtÞ2 locally in time,

� When / ¼ 0:5, then this is the (implicit) ‘‘Midpoint” scheme,
which is stable and bOðDtÞ2 ¼ OðDtÞ3 locally in time.

3.2. Iterative solution methods for coupled systems

We now develop an adaptive iterative scheme for the coupled
system by following an approach found in Zohdi [86–88]. Implicit
time stepping methods, with time step size adaptivity, built on ap-
proaches found in Zohdi [87], will be used throughout the upcom-
ing analysis. For illustration purposes, after time discretization of
the acceleration term in the equations of motion m€r ¼ W using a
/-method

rLþ1 ¼ rL þ vLDt þ /ðDtÞ2

m
ð/WðrLþ1Þ þ ð1� /ÞWðrLÞÞ; ð3:14Þ

one arrives at the following abstract form, for the entire system of
particles,

AðrLþ1Þ ¼F: ð3:15Þ

It is convenient to write

AðrLþ1Þ �F ¼ GðrLþ1Þ � rLþ1 þR ¼ 0; ð3:16Þ

where R is a remainder term that does not depend on the solution,
i.e. R–RðrLþ1Þ. A straightforward iterative scheme can be written as

rLþ1;K ¼ GðrLþ1;K�1Þ þR; ð3:17Þ

where K ¼ 1;2;3; . . . is the index of iteration within time step Lþ 1.
The convergence of such a scheme is dependent on the behavior of
G. Namely, a sufficient condition for convergence is that G is a con-
traction mapping for all rLþ1;K ; K ¼ 1;2;3; . . . In order to investigate
this further, we define the iteration error as eLþ1;K ¼def rLþ1;K � rLþ1. A
necessary restriction for convergence is iterative self consistency,
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i.e. the ‘‘exact” (discretized) solution must be represented by the
scheme

GðrLþ1Þ þR ¼ rLþ1: ð3:18Þ

Enforcing this restriction, a sufficient condition for convergence is
the existence of a contraction mapping

eLþ1;K ¼ krLþ1;K � rLþ1k ¼ kGðrLþ1;K�1Þ � GðrLþ1Þk; ð3:19Þ
6 gLþ1;KkrLþ1;K�1 � rLþ1k; ð3:20Þ

where if 0 6 gLþ1;K < 1 for each iteration K, then eLþ1;K ! 0 for any
arbitrary starting value rLþ1;K¼0, as K !1. This type of contraction
condition is sufficient, but not necessary, for convergence. Inserting
this into m€r ¼ WðrÞ leads to

rLþ1;K ¼ rL þ vLDt þ /ðDtÞ2

m
ðð1� /ÞWðrLÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R

þ/ðDtÞ2

m
ð/WðrLþ1;K�1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðrLþ1;K�1Þ

;

ð3:21Þ

whose convergence is restricted by g / ð/DtÞ2
m . Therefore, we see that

the contraction constant of G is (1) directly dependent on the
strength of the interaction forces, (2) inversely proportional to m
and (3) directly proportional to /Dt. Therefore, if convergence is
slow within a time step, the time step size, which is adjustable,
can be reduced by an appropriate amount to increase the rate of
convergence. Thus, decreasing the time step size improves the con-
vergence, however, we want to simultaneously maximize the time
step sizes to decrease overall computing time, while still meeting
an error tolerance on the numerical solution’s accuracy. In order
to achieve this goal, we follow an approach found in Zohdi [86,87]
originally developed for continuum thermochemical multifield
problems in which (1) one approximates

gLþ1;K � SðDtÞp ð3:22Þ

(S is a constant) and (2) one assumes that the error within an iter-
ation to behave according to

ðSðDtÞpÞKeLþ1;0 ¼ eLþ1;K ; K ¼ 1;2; . . . ð3:23Þ

where eLþ1;0 is the initial norm of the iterative error and S is intrin-
sic to the system.3 Our goal is to meet an error tolerance in exactly a
preset number of iterations. To this end, one writes

ðSðDttolÞpÞKdeLþ1;0 ¼ TOL; ð3:24Þ

where TOL is a tolerance and where Kd is the number of desired iter-
ations.4 If the error tolerance is not met in the desired number of
iterations, the contraction constant gLþ1;K is too large. Accordingly,
one can solve for a new smaller step size, under the assumption that
S is constant,

Dttol ¼ Dt
TOL

eLþ1;0

� � 1
pKd

eLþ1;K

eLþ1;0

� � 1
pK

0@ 1A: ð3:25Þ

The assumption that S is constant is not critical, since the time steps
are to be recursively refined and unrefined throughout the simula-
tion. Clearly, the expression in Eq. (3.25) can also be used for time
step enlargement, if convergence is met in less than Kd iterations.5

An implementation of the procedure is as follows:
3 For the class of problems under consideration, due to the quadratic dependency
on Dt; p � 2.

4 Typically, Kd is chosen to be between five to ten iterations.
5 Time step size adaptivity is important, since the system’s dynamics can

dramatically change over the course of time, possibly requiring quite different time
step sizes to control the iterative error. However, to maintain the accuracy of the time
stepping scheme, one must respect an upper bound dictated by the discretization
error, i.e., Dt 6 Dtlim .
ð3:26Þ
Generally speaking, the iterative error, which is a function of the

time step size, is temporally variable and can become stronger,
weaker, or possibly oscillatory, is extremely difficult to ascertain
a priori as a function of the time step size. Therefore, to circumvent
this problem, the adaptive strategy presented in this section was
developed to provide accurate solutions by iteratively adjusting
the time steps. Specifically, a sufficient condition for the conver-
gence of the presented fixed-point scheme was that the spectral ra-
dius or contraction constant of the coupled operator, which
depends on the time step size, must be less than unity. This obser-
vation was used to adaptively maximize the time step sizes, while
simultaneously controlling the coupled operator’s spectral radius,
in order to deliver solutions below an error tolerance within a pre-
specified number of desired iterations. This recursive staggering
error control can allow for substantial reduction of computational
effort by the adaptive use of large time steps. Furthermore, such a
recursive process has a reduced sensitivity, relative to an explicit
staggering approach, to the order in which the individual equations
are solved, since it is self-correcting. For extensive parameter stud-
ies on this approach see Zohdi [97].

Remark. With regard to the solution process, a recursive iterative
scheme of the Jacobi-type, where the updates are made only after
one complete system iteration, was illustrated in the derivations
only for algebraic simplicity. The Jacobi method is easier to address
theoretically, while the Gauss–Seidel type method, which involves
immediately using the most current values, when they become
available, is usually used at the implementation level. As is well
known, under relatively general conditions, if the Jacobi method
converges, the Gauss–Seidel method converges at a faster rate,
while if the Jacobi method diverges, the Gauss–Seidel method
diverges at a faster rate (for example, see Ames [1] or Axelsson [2]).
It is important to realize that the Jacobi method is perfectly
parallelizable. In other words, the calculation for each particle are
uncoupled, with the updates only coming afterward. Gauss–Seidel,
since it requires the most current updates, couples the particle
calculations immediately. However, these methods can be com-
bined to create hybrid approaches, whereby the entire particulate
flow is partitioned into groups and within each group a Gauss–
Seidel method is applied. In other words, for a group, the positions
of any particles from outside are initially frozen, as far as
calculations involving members of the group are concerned. After
each isolated group’s solution (particle positions) has converged,
computed in parallel, then all positions are updated, i.e. the most
current positions become available to all members of the swarm,
and the isolated group calculations are repeated. Classical solution
methods require OðN3Þ operations, whereas iterative schemes,
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such as the one presented, typically require order Nq, where
1 6 q 6 2. For details see Axelsson [2]. Also, such solvers are highly
advantageous since solutions to previous time steps can be used as
the first guess to accelerate the solution procedure.
4. Numerical examples

4.1. A model problem: chasing a moving target

As a representative of a class of model problems, we now
consider a normalized ‘‘performance” function (normalized
by the total simulation time and the initial separation distance)
representing (1) the time it takes for the swarm members to get
to the target and (2) the distance of the swarm members away
from the target:

P ¼

RT

0

PNp

i¼1kri � Tkdt
� 	
T
PNp

i¼1kriðt ¼ 0Þ � Tk
; ð4:1Þ

where total simulation time is T ¼ 30 and T is the position of the
target (Fig. 1). The components of the initial position vectors of
the non-intersecting swarm members, each assigned a mass of
10 kg. were given random values of �1 6 rix; riy; riz 6 1. The loca-
tion of the moving target was given by the following function:

Tx ¼ xo þ a1cosða2tÞ þ a3t;

Ty ¼ yo þ b1sinðb2tÞ þ b3t;

Tz ¼ zo þ c1cosðc2tÞ þ c3t:

ð4:2Þ

The location of the center of the (rectangular) obstacle array was
(1.5,0,0). A 100-obstacle ‘‘fence” was set up in a 10� 10 array with
a spacing of 0.2 between obstacle centers. For illustration purposes,
200 swarm members were used. The parameters selected were:
amm

1 ¼ 1; amm
2 ¼ 1; amt ¼ 200; amo ¼ 100; bmm

1 ¼ 2; bmm
2 ¼ 2; bmt ¼

2 and bmo ¼ 2. The environmental damping was set to cenv ¼ 1. The
total time was set to T ¼ 30. Simulations, shown in Fig. 2, were run
with the performance being P ¼ 0:2712 (Time steps: 3439, Fixed-
X Y

Z

Fig. 1. A typical setup for a ‘‘swarm”. The target is shown in red, the obstacles in
green and the swarm members are shown in blue. (For interpretation of the
references in colour in this figure legend, the reader is referred to the web version of
this article.)
Point iterations: 24633). Although there is environmental damping,
the envelope of motion is quite large initially (see Table 1).

Remark 1. Typically, for systems with a finite number of particles,
there will be slight variations in the performance for different
random starting configurations. In order to stabilize the objective
function’s value with respect to the randomness of the flow
starting configuration, for a given parameter selection (K, charac-
terized by the a’s and b’s), a regularization procedure is applied,
whereby the performances of a series of different random starting
configurations are averaged until the (ensemble) average con-
verges, i.e. until the following condition is met:

1
Eþ 1

XEþ1

i¼1

PðiÞðKIÞ � 1
E

XE

i¼1

PðiÞðKIÞ
�����

����� 6 TOL
1

Eþ 1

XEþ1

i¼1

PðiÞðKIÞ
�����

�����;
ð4:3Þ

where index i indicates a different starting random configuration
ði ¼ 1;2; . . . ; EÞ that has been generated and E indicates the total
number of configurations tested. For swarms of the sizes tested,
typically, on 2 or 3 samples realizations were needed to average
over.

Remark 2. In Zohdi [87], different sized swarms were tested, and
the resulting optimal strategies (attraction and repulsion coeffi-
cients) were tabulated. From those results it became clear that in
some cases, if the swarm is small enough, bunching up and moving
through the obstacle course is the optimal strategy. Generally, the
best strategy depends strongly on the obstacle course size and
shape and swarm size. A strategy for estimating the parameters,
based on genetic algorithms, is given in the appendix.

Remark 3. In many applications the interaction can dramatically
change when the particles are very close to one another, leading
to increased attraction, resulting in clustering and agglomeration.
A particularly easy way to model this is via an attractive augmen-
tation of the form

Wi ¼ Wi þ aakri � rjkba nij|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Wa ¼def BINDING FORCE

; ð4:4Þ

which is activated if

kri � rjk 6 ðbi þ bjÞda; ð4:5Þ

where bi and bj are the radii of the particles,6 and where 1 6 da is
the critical distance needed for the augmentation to become active.
Denoting the nominal (unagglomerated) equilibrium distance by de

and the equilibrium distance when agglomeration is active, by da,
we have, with ba ¼ b1

kri � rjk ¼
a2

a1 þ aa

� � 1
b1þb2
¼ da 6 de ¼

a2

a1

� � 1
b1þb2

: ð4:6Þ

Remark 4. If we wish to enforce that, if a swarm member gets too
close to an obstacle, then it becomes immobilized, a side condition
can be introduced of the form, 8t;8roj and s <T, if

kriðt ¼ sÞ � Ojk 6 R ð4:7Þ

then ri ¼ riðt ¼ sÞ; 8t P s, where the unilateral condition repre-
sents the effect of being near a ‘‘destructive” obstacle. The swarm
member is stopped in the position where it enters the ‘‘radius of
destruction” ðRÞ. Therefore, the swarm performance ðPÞ is severely
penalized if it loses members to the obstacles.
6 They will be taken to be the same, later in the simulations.



Table 1
Table of parameters.

ðxo; yo; zoÞ a1 a2 a3 b1 b2 b3 c1 c2 c3

(4,0,0) 1 1 0.5 1 1 0.5 1 1 0.5

Fig. 2. Top to bottom and left to right, the swarm moves over the obstacle fence.
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Remark 5. It is important to note that if the interaction is only
between the nearest neighbors, and if there is no inertial reference
point for the swarm members to refer to, instabilities (collisions)
may occur [40,41,76,78,79]. In the present analysis, such inertial
reference points were provided by the swarm’s knowledge of the
stationary obstacles and target.
4.2. Another model problem: multi-site search

As another a model problem, consider 400 swarm members and
200 randomly dispersed ‘‘target sites” which the swarm is tasked
to visit (Fig. 3). The algorithm is as follows: (1) Each swarm mem-
ber is attracted to the nearest target location and (2) If a site has
been visited, then it is inactive (the swarm is not attracted to it).
As the frames indicate, the swarm has a natural tendency to divide
and conquer the domain.

Remark. There are over 100,000,000,000 websites as of 2007.
There are, on average, approximately 250 words per page (like a
book). Clearly, searches for a piece of information would take a



Fig. 3. Top to bottom and left to right, the swarm moves through the search space. Red = site unvisited and green = site visited. (For interpretation of the references in colour
in this figure legend, the reader is referred to the web version of this article.)
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very long time if done directly. Since a computer cannot recognize
words and sentences, only bytes, this requires specialized natural
language processing algorithms, which incorporate programs for
parsing. In this regard, there are processes such as ‘‘web-crawling”
or ‘‘spidering”. These approaches systematically browse the net in
an automated fashion. These programs are primarily used to create
a copy of all visited pages for later processing by a search engine. It
is hoped that swarm-type search, if adapted properly, and
combined with a proper web-crawling routines, could provide a
new, hopefully faster, search paradigm. Primarily, here we mean by
search (both virtual and physical): (1) Data mining for informa-
tional queries (via the internet), (2) Multi-pronged cloud-type
search: circumvents the slower tree-type data structure search
and (3) Area-coverage/man-overboard search: determination of
optimal paths for maximum area-coverage, for example, for a lost
object.
5. Discussion and concluding remarks

In many applications, the computed positions, velocities and
accelerations of the members of a swarm, for example people or
vehicles, must be translated into realizable movement. Further-
more, the communication latency and information exchange poses
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a significant technological hurdle. In practice, further sophistica-
tion, i.e. constraints on movement and communication, must be
embedded into the computational model for the application at
hand. However, the fundamental computational philosophy and
modeling strategy should remain relatively unchanged.

For certain types of swarms the ‘‘visual field” of the individual
members may play a significant role in the overall behavior. In
some cases, this is a non-issue, for example if the vehicles are ro-
bots or UAVs, since the communication is most likely electronic.
However, for certain animals, they see only ahead of them. A rela-
tively simple way to incorporate this into a simulation is to check
the inner product of each swarm member’s velocity with a neigh-
bor’s relative position vector, ðrj � riÞ � v i. Under the assumption
that the swarm members ‘‘look where they are going”, if the inner
product is negative, this indicates that the neighbor is behind the
swarm member’s visual field, and hence there is no interaction be-
tween this specific pair of swarm members. Also, it is important to
note that some while groups interact with their nearest neighbors,
while some with a specific number of swarm members, regardless
of whether they are far away [26]. For example, specifically for
Starlings (Sturnus vulgaris), Ballerini et al. [3] conclude, based on
a number of careful observations, that interactions are governed
by topological distance and not metric distance, i.e. a bird commu-
nicates with a certain number of birds surrounding it, regardless of
the distance away. The authors believe that this may be attributed
to a perceptual limit in of the number of objects that they can
track. Specifically, Ballerini et al. [3] have determined that the
interaction, for a typical bird in a swarm, decays rapidly after
approximately the sixth or seventh nearest neighbor. For Starlings,
their empirical evidence appears to support this hypothesis. This
issue is currently under investigation by the author.

Finally, an important aspect of any model is the identification of
parameters which force the system behavior to approximate, as
close as possible, a desired target response. For example, in the
ideal case, one would like to determine the type of interaction that
produces certain overall system characteristics, via numerical sim-
ulations, in order to guide or minimize time-consuming laboratory
tests. As a representative of a class of model problems, consider
‘‘inverse” problems whereby the parameters in the interaction rep-
resentation are sought, the a’s and b’s, which deliver a target sys-
tem behavior by minimizing a normalized cost function

P ¼
RT

0 jA� A�jdtRT

0 jA
�jdt

; ð5:1Þ

where the total simulation time is T, where A is a computationally
generated quantity of interest and where A� is the target response.
Typically, for the class of problems considered in this work, formu-
lations ðPÞ such as in Eq. (5.1) depend, in a nonconvex and nondif-
ferentiable manner, on the a’s and b’s. This is primarily due to the
nonlinear character of the interaction, the physics of sudden in-
ter-particle impact and the transient dynamics. Clearly, we must
have restrictions (for physical reasons) on the parameters in the
interaction

a�i 6 ai 6 aþi ð5:2Þ

and

b�i 6 bi 6 bþi ; ð5:3Þ

where a�i ; aþi ; b�i and bþi , are the lower and upper limits on the
coefficients in the interaction forces.7 With respect to the minimiza-
tion of Eq. (5.1), classical gradient-based deterministic optimization
techniques are not robust, due to difficulties with objective function
7 Additionally, we could also vary the other parameters in the system, such as the
drag, etc. However, we shall fix these parameters during the upcoming examples.
nonconvexity and nondifferentiability. Classical gradient-based algo-
rithms are likely to converge only toward a local minimum of the
objective function unless a sufficiently close initial guess to the glo-
bal minimum is not provided. Also, usually it is extremely difficult to
construct an initial guess that lies within the (global) convergence
radius of a gradient-based method. These difficulties can be circum-
vented by the use of a certain class of simple, yet robust, nonderiv-
ative search methods, usually termed ‘‘genetic” algorithms (GA),
before applying gradient-based schemes. Genetic algorithms are
search methods based on the principles of natural selection, employ-
ing concepts of species evolution, such as reproduction, mutation
and crossover. Implementation typically involves a randomly gener-
ated population of fixed-length elemental strings, ‘‘genetic” informa-
tion”, each of which represents a specific choice of system
parameters. The population of individuals undergo ‘‘mating
sequences” and other biologically inspired events in order to find
promising regions of the search space. There are a variety of such
methods, which employ concepts of species evolution, such as repro-
duction, mutation and crossover. Such methods can be traced back,
at least, to the work of John Holland [42]. For reviews of such meth-
ods, see, for example, Goldberg [31], Davis [17], Onwubiko [68],
Kennedy and Eberhart [59] Lagaros et al. [61], Papadrakakis et al.
[69–72] and Goldberg and Deb [32]. The appendix provides further
information on the use of genetic algorithms.
Appendix A. Fundamentals of potentials

When the dimensions of a body are insignificant to the descrip-
tion of its motion or the action of forces on it, the body may be ide-
alized as a particle, i.e. a piece of material occupying a point in
space and perhaps moving as times passes. In the next few sec-
tions, we briefly review some essential concepts that will be
needed later in the analysis of particles.

A.1. Work, energy and power

A closely related concept is that of work and energy. The differ-
ential amount of work done by a force acting through a differential
displacement is

dW ¼ W � dr: ðA:1Þ

Therefore, the total amount of work performed by a force over a dis-
placement history is

W1!2 ¼
Z rðt2Þ

rðt1Þ
W � dr ¼

Z rðt2Þ

rðt1Þ
ma � dr ¼

Z rðt2Þ

rðt1Þ
mv � dv

¼ 1
2

mðv2 � v2 � v1 � v1Þ ¼def T2 � T1; ðA:2Þ

where T ¼def 1
2 mv � v is known as the kinetic energy.8 Therefore, we

may write

T1 þW1!2 ¼ T2: ðA:3Þ

If the forces can be written in the following form:

dV ¼ �W � dr; ðA:4Þ

then

W1!2 ¼ �
Z rðt2Þ

rðt1Þ
dV ¼ Vðrðt1ÞÞ � Vðrðt2ÞÞ; ðA:5Þ

where

W ¼ �rV : ðA:6Þ
8 The chain rule was used to write a � dr ¼ v � dv .
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Such a force is said to be conservative. Furthermore, it is easy to
show that a conservative force must satisfy

r�W ¼ 0: ðA:7Þ

The work done by a conservative force on any closed path is zero,
since

�
Z rðt2Þ

rðt1Þ
dV ¼ Vðrðt1ÞÞ � Vðrðt2ÞÞ ¼

Z rðt1Þ

rðt2Þ
dV

)
Z rðt2Þ

rðt1Þ
dV þ

Z rðt1Þ

rðt2Þ
dV ¼ 0: ðA:8Þ

As a consequence, for a conservative system,

T1 þ V1 ¼ T2 þ V2: ðA:9Þ

Also, power can be defined as the time rate of change of work

dW
dt
¼ W � dr

dt
¼ W � v : ðA:10Þ
9 For disturbances in directions orthogonal to the normal direction, the potential is
neutrally stable, i.e. the Hessian’s determinant is zero, thus indicating that the
potential does not change for such perturbations. The motion analysis of in the
normal direction is relevant for central forces of the type under consideration.

10 Note that

@2n
@r2 ¼ 0: ðA:22Þ
A.2. Properties of a potential

As we have indicated, a force field W is said to be conservative if
and only if there exists a continuously differentiable scalar field V
such that, W ¼ �rV . Therefore, a necessary and sufficient condi-
tion for a particle to be in equilibrium is that

W ¼ �rV ¼ 0: ðA:11Þ

In other words

@V
@x1
¼ 0;

@V
@x2
¼ 0 and

@V
@x3
¼ 0: ðA:12Þ

Forces acting on a particle that are (1) always directed toward or
away another point and (2) whose magnitude depends only on
the distance between the particle and the point of attraction/repul-
sion are called central forces. They have the form

W ¼ �Cðkr � rokÞ
r � ro

kr � rok
¼ Cðkr � rokÞn; ðA:13Þ

where r is the position of the particle, ro is the position of a point to
which the particle is attracted toward and repulsed from and

n ¼ ro � r
kr � rok

: ðA:14Þ

The central force is one of attraction if

Cðkr � rokÞ > 0 ðA:15Þ

and one of repulsion if

Cðkr � rokÞ < 0: ðA:16Þ

We remark that a central force field is always conservative, since
r�W ¼ 0. Now consider the specific choice

V ¼ a1kr � rokb1þ1

b1 þ 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
attraction

�a2kr � rok�b2þ1

�b2 þ 1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
repulsion

; ðA:17Þ

where all of the parameters, a’s and b’s, are nonnegative. The gradi-
ent yields

�rV ¼ W ¼ ða1kr � rokb1 � a2kr � rok�b2 Þn; ðA:18Þ

which is repeatedly used later in this monograph. If a particle which
is displaced slightly from an equilibrium point tends to return to
that point, then we call that point a point of stability or stable point,
and the equilibrium is said to be stable. Otherwise we say that the
point is one of instability and the equilibrium is unstable. A neces-
sary and sufficient condition for a point of equilibrium to be stable is
that the potential V at that point be a minimum. The general condition
by which a potential is stable for the multi-dimensional case can be
determined by studying the properties of the Hessian of V,

½H� ¼def

@2V
@x1@x1

@2V
@x1@x2

@2V
@x1@x3

@2V
@x2@x1

@2V
@x2@x2

@2V
@x2@x3

@2V
@x3@x1

@2V
@x3@x2

@2V
@x3@x3

26664
37775; ðA:19Þ

around an equilibrium point. A sufficient condition for V to attain a
minimum at an equilibrium point is for the Hessian be positive def-
inite (which implies that V is locally convex). For more details see
Hale and Kocak [38].

Remark 1. Provided that the a’s and b’s are selected appropriately,
the chosen central force potential form is stable for motion in the
normal direction, i.e. the line connecting the centers of particles in
particle–particle interaction.9 In order to determine stable param-
eter combinations, consider a potential function for a single particle,
in one-dimensional motion, representing the motion in the normal
direction, attracted and repulsed from a point ro, measured by the
coordinate r,

V ¼ a1

b1 þ 1
jr � rojb1þ1 � a2

�b2 þ 1
jr � roj�b2þ1

; ðA:20Þ

whose derivative produces the form of interaction forces introduced
earlier:

W ¼ � @V
@r
¼ a1jr � rojb1 � a2jr � roj�b2
� 	

n; ðA:21Þ

where n ¼ ro�r
jr�ro j. For stability, we require10

@2V
@r2 ¼ a1b1jr � rojb1�1 þ a2b2jr � roj�b2�1

> 0: ðA:23Þ

Thus, provided that the a’s and b’s are all positive, then the potential
form is stable. A static equilibrium point, r ¼ re, can be calculated
from Wðjre � rojÞ ¼ �a1jre � roj�b1 þ a2jre � roj�b2 ¼ 0, which implies

jre � roj ¼
a2

a1

� � 1
b1þb2

: ðA:24Þ

Inserting Eq. (A.24) into Eq. (A.23) yields a restriction for stability

b2

b1
> �1; ðA:25Þ

which for the positive parameter selections (a’s and b’s) is always
satisfied. Thus, the central force potential in Eq. (A.17) is stable
for motion in the normal direction, i.e. the line connecting the cen-
ters of the particles. For disturbances in directions orthogonal to the
normal direction, the potential is neutrally stable, i.e. the Hessian’s
determinant is zero, thus indicating that the potential does not
change for such perturbations.

Remark 2. In MD calculations, more complex potentials are often
used, and typically take the form

V ¼
X

i;j

V2 þ
X
i;j;k

V3 þ � � � ðA:26Þ

where V2 is the binary, V3 tertiary, etc. potential energy functions,
and the summations are taken over corresponding combinations
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of atoms. The binary functions usually take the form of the familiar
Mie, Lennard-Jones, and Morse potentials [66]. The expansions be-
yond the binary interactions introduce either three-body terms di-
rectly [77] or as ‘‘local” modifications of the two-body terms [84].
Readers are referred to Frenklach and Carmer [28] for a survey of
MD-type models, which includes comparisons of the theoretical
and computational properties of a variety of interaction laws. The
MD approach has been applied to description of solid, liquid, and
gaseous phases, as well as biological systems (see Hase [39], Schlick
[75] and Rapaport [74]).
11 The unit normal has been taken into account, thus the presence of a change in
sign.
A.3. Stability interpretation

One can consider the convexity requirement on the potential to
insure that the perturbed motion to a dynamical state remain small.
Consider the dynamics of a particle in the normal direction, with a
perturbation, ~r ¼ r þ dr;m€~r ¼ Wð~rÞ, where r is the perturbation-free
position vector of the particle, governed by m€r ¼ WðrÞ. Taking the
difference between these two differential equations yields

m €dr ¼ Wð~rÞ �WðrÞ � @W
@r
j~r¼rdr þ � � � ) m €dr � @W

@r
j~r¼rdr

� 0: ðA:27Þ

If @WðrÞ
@r is positive, there will be exponential growth of the perturba-

tion, while if @WðrÞ
@r is negative, there will be oscillatory behavior of

the perturbation. Thus, since � @2V
@r2 ¼ @W

@r , we have

m €dr þ @
2V
@r2 j~r¼rdr � 0: ðA:28Þ

The convexity of the potential simply corresponds to the positive-
ness of the stiffness at r.

Appendix B. Basic properties of swarm-type models

The governing equations are formally similar to classical, nor-
malized, linear (or linearized) second-order equations governing
a one degree of freedom harmonic oscillator of the form

€r þ 2fxn _r þx2
nr ¼ f ðtÞ

m
; ðB:1Þ

where xn ¼
ffiffiffi
k
m

q
; r is the position measured from equilibrium

ðr ¼ 0Þ, k is the stiffness associated with the restoring force ðkrÞ;m
represents the mass, and where the damping ratio is f ¼def d

2mxn
;d

being a constant of damping and f ðtÞ is an external forcing term.
The damped period of natural, force-free, vibration is Td ¼

def 2p
xd

, where
xd ¼

def xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
is the ‘‘damped natural frequency”. Using standard

procedures, one decomposes the solution into homogeneous and
particular parts, r ¼ rH þ rP . The homogeneous part must satisfy

€rH þ 2fxn _rH þx2
nrH ¼ 0: ðB:2Þ

Assuming the standard form rH ¼ expðktÞ, yields, upon substitution,

k2 expðktÞ þ 2fxnk expðktÞ þx2
n expðktÞ ¼ 0; ðB:3Þ

leading to the characteristic equation

k2 þ 2fxnkþx2
n ¼ 0: ðB:4Þ

Solving for the roots yields

k1;2 ¼ xn �f	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q� �
: ðB:5Þ

The general solution is

r ¼ A1 expðk1tÞ þ A2 expðk2tÞ: ðB:6Þ

Depending on the value of f, the solution will have one of three dis-
tinct types of behavior:
� f > 1, overdamped, leading to no oscillation, where the value of r
approaches zero for large values of time. Mathematically, k1 and
k2 are negative numbers, thus

rH ¼ A1 exp xn �fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q� �
t

� �
þ A2

� exp xn �f�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q� �
t

� �
: ðB:7Þ

� f ¼ 1, critically damped, leading to no oscillation, where the
value of r approaches zero for large values of time, however fas-
ter than the overdamped solution. Mathematically, k1 and k2 are
equal real numbers, k1 ¼ k2 ¼ �xn, thus

rH ¼ ðA1 þ A2tÞ expðxntÞ: ðB:8Þ

� f < 1, underdamped, leading to damped oscillation, where the
value of r approaches zero for large values of time, in an oscilla-
tory fashion. Mathematically, f2 � 1 < 0, thus

rH ¼ A1 cosðxdtÞ þ A2 sinðxdtÞ: ðB:9Þ

Thus, under certain conditions, a particulate flow can vibrate or
‘‘pulse”. The particular solution, generated by the presence of
externally applied forces, satisfies the differential equation for a
specific righthand side

€rP þ 2fxn _rP þx2
nrP ¼

f ðtÞ
m

: ðB:10Þ

For example, if f ðtÞ ¼ fo sinðXtÞ,

rP ¼ R sinðXt � /Þ; ðB:11Þ

where

R ¼ fo

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

x2
n

� 	2
þ 2f X

xn

� 	2
r ; ðB:12Þ

and

/ ¼ tan�1
2f X

xn

1� X2

x2
n

0@ 1A: ðB:13Þ

In order to qualitatively tie this directly to the form of problem con-
sidered in this work, consider a linearization of a single nonlinear
differential equation, describing the attraction and repulsion from
the origin (ro ¼ 0) of the form11

m€r þ d_r ¼ WðrÞ; ðB:14Þ

where

WðrÞ ¼ �a1r�b1 þ a2r�b2 ; ðB:15Þ

and where d is an effective dissipation term. Upon linearization of
the nonlinear interaction relation about a point r�,

WðrÞ � Wðr�Þ þ
@W
@r

����
r¼r�

ðr � r�Þ þ Oðr � r�Þ; ðB:16Þ

and normalizing the equations, we obtain

€r þ 2f�x�n _r þ ðx�nÞ
2r ¼ f �ðtÞ

m
; ðB:17Þ

where

x�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�@W

@r

��
r¼r�

m

s
; ðB:18Þ
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where f� ¼ d
2mx�n

and where

f �ðtÞ ¼ Wðr�Þ �
@W
@r

����
r¼r�

r�: ðB:19Þ

For the specific interaction form chosen we have

x�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1b1rb1�1

� þ a2b2r�b2�1
�

m

s
; ðB:20Þ

and where the ‘‘loading” is

f �ðtÞ ¼ a1rb1
� þ a2r�b2

� þ a1b1rb1�1
� þ a2b2r�b2�1

� : ðB:21Þ

If r� is chosen as the static equilibrium point, re, then

r� ¼ re ¼
a2

a1

� � 1
b1þb2

ðB:22Þ

and

x�n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

a1b1
a2

a1

� � b1�1
b1þb2
þ a2b2

a2

a1

� ��b2�1
b1þb2

0@ 1A
vuuut ¼def

ffiffiffiffiffi
k�

m

r
; ðB:23Þ

where

k� ¼def a1b1
a2

a1

� � b1�1
b1þb2
þ a2b2

a2

a1

� ��b2�1
b1þb2

0@ 1A: ðB:24Þ

Thus, if we kept the ratio a1
a2

constant, however increasing a1 (while
keeping m constant), we would effectively be increasing the ‘‘stiff-
ness” in the system. Also, note that if a2 ¼ b1 ¼ b2 ¼ 0, then this col-
lapse to the familiar linear harmonic oscillator. Clearly, under
certain conditions, a particulate flow may ‘‘pulse” (oscillate)
depending on the character of the interaction and the contact
parameters. Thus, oscillatory behavior is not unexpected for the
multibody system. We remark that, increasingly smaller x�n indi-
cates that the system tends toward a ‘‘regular” non-interacting sys-
tem. Smaller x�n would occur with smaller attractive forces, and
larger values of f� (more damped). Clearly, key dimensionless
parameters, like f�, characterize the oscillatory behavior and the
fluctuating motion with respect to mean values within the swarm.

Appendix C. A genetic algorithm

Here we summarize a genetic algorithm found in Zohdi [87–93]
which has been developed to treat nonconvex inverse problems
involving multi-particle systems. The central idea is that the sys-
tem parameters form a genetic string and a survival of the fittest
algorithm is applied to a population of such strings. The overall
process is: (a) a population ðSÞ of different parameter sets are gen-
erated at random within the parameter space, each represented by
a (‘‘genetic”) string of the system ðNÞ parameters, (b) the perfor-
mance of each parameter set is tested, (c) the parameter sets are
ranked from top to bottom according to their performance, (d)
the best parameter sets (parents) are mated pairwise producing
two offspring (children), i.e. each best pair exchanges information
by taking random convex combinations of the parameter set com-
ponents of the parents’ genetic strings and (e) the worst perform-
ing genetic strings are eliminated, new replacement parameter sets
(genetic strings) are introduced into the remaining population of
best performing genetic strings and the process (a–e) is then re-
peated. The term ‘‘fitness” of a genetic string is used to indicate
the value of the objective function. The most fit genetic string is
the one with the smallest objective function. The retention of the
top fit genetic strings from a previous generation (parents) is crit-
ical, since if the objective functions are highly nonconvex (the pres-
ent case), there exists a clear possibility that the inferior offspring
will replace superior parents. When the top parents are retained,
the minimization of the cost function is guaranteed to be mono-
tone (guaranteed improvement) with increasing generations.
There is no guarantee of successive improvement if the top parents
are not retained, even though nonretention of parents allows more
new genetic strings to be evaluated in the next generation. In the
scientific literature, numerical studies imply that, for sufficiently
large populations, the benefits of parent retention outweigh this
advantage and any disadvantages of ‘‘inbreeding”, i.e. a stagnant
population. For more details on this so-called ‘‘inheritance prop-
erty” see Davis [17] or Kennedy and Eberhart [59]. In the upcoming
algorithm, inbreeding is mitigated since, with each new genera-
tion, new parameter sets, selected at random within the parameter
space, are added to the population. Previous numerical studies of
the author [87–93] have indicated that not retaining the parents
is suboptimal due to the possibility that inferior offspring will re-
place superior parents. Additionally, parent retention is computa-
tionally less expensive, since these parameter sets do not have to
be reevaluated (on ranked) in the next generation. An implementa-
tion of such ideas is as follows [87–93]:

� Step 1: Randomly generate a population of S starting genetic
strings, Ki; ði ¼ 1; . . . ; SÞ : Ki ¼def fKi

1;K
i
2;K

i
3;K

i
4; . . . ; . . . Ki

Ng ¼ fai
1;

bi
1;ai

2; b
i
2; . . .g.

� Step 2: Compute fitness of each string PðKiÞ; ði ¼ 1; . . . ; SÞ.
� Step 3: Rank genetic strings: Ki; ði ¼ 1; . . . ; SÞ.
� Step 4: Mate nearest pairs and produce two offspring, ði ¼ 1;

. . . ; SÞki ¼def UðIÞKi þ ð1�UðIÞÞKiþ1; kiþ1 ¼def UðIIÞKi þ ð1�UðIIÞÞKiþ1.
� Note: UðIÞ and UðIIÞ are random numbers, such that

0 6 UðIÞ;UðIIÞ 6 1, which are different for each component of each
genetic string.

� Step 5: Kill off bottom M < S strings and keep top K < N parents
and top K offspring (K offspring + K parents + M = S).

� Step 6: Repeat Steps 1–6 with top gene pool (K offspring and K
parents), plus M new, randomly generated, strings.

� Option: Rescale and restart search around best performing
parameter set every few generations.

� Option: We remark that gradient-based methods are sometimes
useful for post-processing solutions found with a genetic algo-
rithm, if the objective function is sufficiently smooth in that
region of the parameter space. In other words, if one has located
convex portion of the parameter space with a global genetic
search, one can employ gradient-based procedures locally to
minimize the objective function further. In such procedures, in
order to obtain a new directional step for K, one must solve
the following system:

½H�fDKg ¼ �fgg; ðC:1Þ

where ½H� is the Hessian matrix ðN � NÞ, where fDKg is the
parameter increment ðN � 1Þ, and fgg is the gradient ðN � 1Þ.
Extensive reviews of these methods can be found in Luenberger
[65], Gill et al. [30] and Papadrakakis et al. [73].
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