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a b s t r a c t 

In this paper, a mathematical model is developed to simulate the progressive time- 

evolution of an object that fragments, which may contain biohazardous materials or mate- 

rials that may thermally degrade into a toxic state. Estimates are made for the blast radius 

that one can expect for a given amount of detonation energy and the resulting atmospheric 

heating of fragments. The atmospheric heating of the fragments is important, since if the 

heating is sufficiently high, the biohazardous material can be neutralized. If the material 

is not heated sufficiently, then the location in which it lands can be considered as “con- 

taminated”. This analysis is useful is determining safe areas after such a blast. Ascertaining 

the temperature of the fragments is extremely difficult to measure in experiments, thus 

motivating the development of the model. The model balances the released energy from 

the initial blast pulse with the subsequent kinetic energy and then numerically computes 

the trajectory of the fragments under the influence of the drag from the surrounding air 

and gravity. Preliminary field experiments with explosives are described and the results 

are compared to the output from the model. The subsequent drag heating of the material 

is then computed in order to ascertain the temperature of the blast fragments. 

Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Understanding the blast fragmentation of objects that contain biohazardous material has wide-ranging applications, es- 

pecially with respect to emergency management, and limitation of human exposure. Events involving explosions and bio-

hazardous materials include accidents at chemical production or water treatment facilities that may release clouds of toxic

industrial material, or even deliberate destruction of either chemical or biological weapons of mass destruction production

facilities of both state and non-state actors. Both examples involve interaction of a blast with a container of material that

can be either solid, liquid, or a mixture of both. These events can lead to the release of aerosol clouds that can carry haz-

ardous material long distances, potentially exposing many people to toxic material. Specifically, the main objective of the

present study is to construct a model which captures the essential physics of detonation and blast envelope growth, as

well as subsequent atmospheric drag heating of the resulting fragments. The computed heating can be used to ascertain

the survivability of small-scale biohazardous material contained within the blast fragments. For example, in many scenarios,

heating can either kill microorganisms, chemically degrade chemicals, or create new, potentially hazardous, chemicals. It is

thus essential to understand atmospheric heating. 
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Fig. 1. Explosion of an object containing biomaterial experiencing atmospheric heating. 

Fig. 2. Still frames from the field experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a model problem, we simulate an explosive device as a sphere that is hollowed out with an energetic material in

the center ( Fig. 1 ). The shell is extremely thin and is simply present to separate the inner core of explosives from the

surrounding blast material which is to be tracked. In this work, we do not consider detailed models for the interaction

between the shock wave and the packed fragments (see for example Cabalo, Schmidt, Wendt, & Scheeline, 2002; Gregoire,

Sturtzer, & Khasainov, 2009; Hoover & Hoover, 2009; Kudryashova et al., 2011 ) nor the chemical aspects which are beyond

the scope of the present work. 

2. Motivation via experiments 

The result from a set full scale field experiments with high explosives and ballistic gelatin motivates the desire to predict

the dispersal of material by the blast as well as understand the effects of atmospheric heating. The primary conclusion

that could be drawn from these experiments is that aerosols generated from a blast containing toxic materials cannot be

assumed to be inactivated by the blast itself ( Cabalo et al., 2016 ). For example, this result is in agreement with the findings

of Eshkol and Katz (2005) , and Kanemitsu (2005) , where Hepatitis B was transmitted from a suicide bomber to survivors of

the blast. 

To summarize the set of experiments, we detonated blocks of ballistic gelatin with high explosives on a test range to

explore the survivability of fragmented (particulate) material, as shown in Fig. 2 . Ballistic gelatin was used in the test due

to its well understood mechanical properties and relevance to previous human injury studies, and it is a thermally sensi-

tive material that melts at approximately 40 °C. An aerosol particle sizer and a UV-fluorescent particle counter that was

selectively sensitive to the protein of the ballistic gelatin monitored aerosols generated. A small amount of bacterial spores

had been mixed into the gelatin, so that we could detect deposition of even very small amounts of material on witness

plates. The use of living material also permitted an assessment of thermal damage to the material since temperatures in

excess of 70 °C will kill the microorganisms. Although these experiments were far from quantitative, we could draw the

conclusion that interaction of material with a detonation fireball was minimal, so that it cannot be assumed the detonation

will consume the hazardous material. Although the ballistic gelatin we used melts at low temperatures in comparison to

temperatures found in the blast, a large amount of solid gelatin was collected on the test pad. Furthermore, witness plates

located approximately 100 m away from the blast site, collected aerosol fragments bearing viable organisms. These were

detected by swabbing the witness plates with wetted wipes, and plating rinse onto agar plates. Bacterial colonies were then

counted. Significant transient concentrations of aerosol (approximately 10 0 0 particles/L) only attributable to the gelatin were

detected. Again this means it cannot be assumed the heat and pressure from the blast will consume hazardous material,

even if the proportion of high explosive to hazardous material is high. 

The result of the test also highlighted the need for a good model. There are numerous possible configurations of con-

tainers of possible hazardous materials versus a blast, ranging from a large chemical tank to storage sites of weapons of
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Fig. 3. The still frames(the first two panels ( #1 and #2 ) are used to compute the object velocities in the panels #3 and #4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mass destruction contained within 55 gallon drums destroyed by a munition. As a result, depending on the initial geome-

try, individual fragments ejected by the blast can experience greatly different thermal histories. The thermal history of each

fragment will determine the amount of degradation or chemical change that that fragment will undergo. Thus, a good model

of the atmospheric heating is essential for accurately predicting the resulting threat. Although the experiments briefly de-

scribed above were not performed in a precisely controlled manner, high speed video of the detonation tests were recorded

that provide fragment trajectory data for comparison between the model and experiment. Although transient thermal mea-

surements were not recorded during the execution of the test, realistic trajectories of fragments were recorded to help

validate the model. 

2.1. Experiments 

The objective of the analysis was to obtain an estimation of the footprint of material deposited by the blast that can be

compared to the results of the modeling. Due to the use of a single high speed camera, our measurements of speed and

direction were projections of the true velocity onto the image plane of the camera. Components of the velocity directed

towards or away from the camera cannot be seen, and furthermore, perspective as a function of distance is not taken into

account. However, we made the reasonable assumption that dispersion is isotropic (since it was a radially-outward blast),

thus we need only determine the maximum distance objects will travel in one plane. We do not believe perspective in the

image to be a problem because only objects within the image plane achieved the longest distance of travel and contribute

to the footprint measurement. The maximum distances were used to compare to the model. 

Because we used the high speed video from the experiments that provided the motivation for model development, we

now provide additional experimental details. Experiments were performed at the test range at the Aberdeen Proving Ground.

The test was performed for 3.6 kg TNT explosive (8 M1 Demolition Blocks) arranged around the 26.9 kg block of ballistic

gelatin, sitting on a 120 cm tall platform ( Fig. 2 ). Small amounts of fluorescent, food grade dye (WaterGlo 801, Spectroline,

Inc.) were added to the gelatin (500 μ L). High speed video was recorded at a safe distance from the detonation site at

100 m with a High Definition Olympus i-Speed 2 camera that has 1024 × 1280 pixels at a frame rate of 500 frames per

second. Matlab 2016b was used to capture and analyze frames from the high speed video. 

To determine velocities in the image plane of the camera, consecutive frames were used. We used pairs of frames primar-

ily from 40 to 60 ms after the blast. Most objects were obscured in the earlier frames by the explosion flash, and yielded

very high transient velocities that would not be sustained due to the effect of drag. Most objects had moved out of the

camera view by later frames. Fig. 3 , panels #1 − #4 , demonstrate the analysis of the 8 pound TNT test. Objects of known

dimensions in the scene were used to determine distances so that distances in pixels could be converted to physical dis-

tances. The difference image was taken of the two frames ( Fig. 3 , panels #1 and #2 ) by mathematically subtracting their

pixel readings, and then converted to monochrome to simplify detection of objects in motion. Anything not in motion was

eliminated from the image. A threshold filter was then applied to aid in the identification of individual objects. Moving ob-

jects appear twice in the image; once as an object with pixel values consisting of negative values, the second with positive

pixel values. Shape and proximity of the two image components were used to uniquely identify objects in the difference

image. The object centroids were used to determine position as well as the shift in position between frames. As a data

check, the velocity vectors were superimposed over one of the unprocessed image frames as shown in Fig. 3 , panel #4 . We

verified that the velocity vectors corresponded to real object images. 

Not all objects gave two clean images that could be used to trace the velocity, so not every object visible in Fig. 3 ,

panel #4 , yielded a velocity vector. This occurred either because of contrast issues with the background, or the change in

illumination from the explosion fireball. Nevertheless, a number of objects were tracked in each pair of images, allowing

for determination of reasonable velocities and estimation of distance traveled. Velocities are determined by measuring the

distance in pixels between an object’s positive and negative images. Pixel distances were then converted to physical distance

in the camera plane, and velocities were determined by the time difference (2 ms) between frames. We also used the

velocity vector projected into the image plane to calculate distance traveled in that plane. To roughly calculate the airborne

time of a fragment (after the initial frames of the explosion), we computed the time takes for an object to go up, starting at
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Fig. 4. Histogram of distance distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a distance of h o , with vertical component ( v oy ) of the initial velocity v o and then to come down from the maximum attained

height (in free fall) 

t h = 

v oy 

g ︸︷︷︸ 
time up 

+ 

1 

g 

√ 

(v 2 oy + 2 gh o ) ︸ ︷︷ ︸ 
time down 

. (2.1)

To estimate the horizontal distance traveled of the fragment, we then multiplied t h by the horizontal component of the

velocity. To see the distribution of estimated deposition of objects as a function of distance from the test site, a histogram

was generated from the video data. For each test size, a list of estimated object travel distances were generated. Object

distances falling within the values of a bin produced a count within that bin, and all the counts in the bins were summed.

The resulting histogram in Fig. 4 shows the distribution of distances traveled. 

Remark: Because of the way we have experimentally estimated the initial velocity ( v o ), from the initial frames in the

preceding analysis, the drag has implicitly been accounted for, where it would be of the greatest effect. Beyond this initial

stage, it is appropriate to comment on the implications of neglecting drag after the initial stages of the blast. First, it is not

easy to directly estimate the drag effects analytically, since it is not constant (this will be discussed later in the paper). Drag

will reduce the time to go up to the maximum height, however, it will increase the time it takes to come down. Thus, it

is generally impossible to make a definitive analytical statement a priori on whether drag reduces or increases the distance

travelled, thus motivating the analysis later in the paper. 

2.2. Summary of the experimental results 

The results are as follows: 

• Fig. 3 , panels #1 and #2 , shows consecutive still frames from the test used to generate the difference image in panel

#3 . A fraction of the objects clearly appear twice in the difference image, and the distance between them is used to

determine the velocity. Objects giving identifiable pairs of images are marked with a velocity vector in the difference

image. 

• Fig. 3 , panel #4 , shows still frame with velocity vectors superimposed. Each vector corresponds to a moving object that

could be measured in the image. 

• Fig. 4 shows a histogram of distance traveled. To calculate the histogram, the velocities of objects measured from the

difference images(both speed and direction), were used to estimate distances traveled. Twenty 100 m interval bins were

used up to 10 0 0 m. A maximum distance of 787 m was obtained. From the video analysis we calculated an average

speed of 56.1 m/s and a maximum of 119.6 m/s in the camera image plane. 

A point to be made of detailed experiments is that they take an inordinate amount of time and it is impractical to do

large numbers of parameter studies. Furthermore, the heating of the objects is difficult to ascertain. Both of these issues

motivate the development of a rapid computational tool, which is the subject of this paper. 

3. Simplifying assumptions for the computational model 

We make the following simplifying assumptions: 
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• We will assume the same initial velocity for all fragments (based on our previous) camera observations, since the blasts

under consideration are radially-outward (by construction). This of course naturally implies that a non-interaction ap-

proximation is appropriate. Specifically, the fragments do not interact with one another and are assumed spherical with

radius R i , i = 1 , 2 , 3 . . . N = f ragments . Based on the experimental observations, the blast fragments are quite small and

for radially-outward blasts, the amount of rotation, if any, contributes negligibly (recall, the spherical shape of the charge

and blast) to the overall trajectory of the fragments. We assume that upon detonation, each fragment has the same im-

pulsive detonation velocity (denoted δv (0)), in the radial direction from the center of the blast. The mass of the explosive

material (TNT) is considered negligible and is converted to energy, which is imparted to the surrounding fragmenting ma-

terial. The (polymeric) shell casing enclosing the explosive is extremely thin (essentially a plastic wrap) which is simply

to hold the TNT together when placed within the gelatin. It plays no role in the subsequent explosion dynamics. Thus,

mathematically, the velocity vector pulse is radially outward from the center of the sphere, co-located at the center of

mass of the explosive material: 

δv i (0) = || δv (0) || 
(

r i (0) − r c (0) 

|| r i (0) − r c (0) || 
)

def = || δv (0) || n ri (3.1) 

where r i is the position vector of the i th fragment, n ri is the normal/radial direction and 

r c (0) = 

1 (∑ N 
i =1 m i 

) N ∑ 

i =1 

m i r i (0) , (3.2) 

where N is the number of fragments, r c (0) is the center of mass of the fragmenting material and m i is the mass of each

fragment. In the general case where the object was moving before the blast, the pulse velocities are added to the velocity

vectors immediately before the pulse ( v −(0) ) 

v + 
i 
(0) = v −

i 
(0) + δv i (0) . (3.3) 

• The magnitude of the initial velocity pulse dictates initial energy released ( E ), which is assumed to be converted into

kinetic energy for the material at (t = 0) : 

E = 

N ∑ 

i =1 

1 

2 

m i || δv (0) || 2 ⇒ || δv (0) || = 

√ 

2 E ∑ N 
i =1 m i 

= 

√ 

2 E 

M 

, (3.4)

where δv (0) is the velocity of pulse imparted to a fragment in the radial direction, M is the total detonation material

mass, m i = ρi 
4 
3 πR 3 

i 
is mass of the individual fragments, where ρ i is the density of the fragments. 

• For the objects, the effects of their rotation with respect to their mass center are unimportant to their overall motion.

The equation of motion for the i th fragment in the system is 

m i ̇ v i = �tot 
i = �drag 

i 
+ �gra v 

i 
, (3.5) 

with initial velocity v i (0) and initial position r i (0). The gravitational force is �gra v 
i 

= m i g, where g = (g x , g y , g z ) =
(0 , 0 , −9 . 81) m/s 2 . 

• For the drag, we will employ a general phenomenological model 

�drag 
i 

= 

1 

2 

ρa C D || v f − v i || ( v f − v i ) A i , (3.6) 

where C D is the drag coefficient, A i is the reference area, which for a sphere is A i = πR 2 
i 
, ρa is the density of the ambient

fluid environment and v f is the velocity of the surrounding medium which, in the case of interest, is air. 

• For the drag-heating rate, we take the inner-product of the drag force with the relative velocity of the fragment to the

surrounding environment, and insert it into the First Law of Thermodynamics: 

m i C i ˙ θ = �drag 
i 

· ( v f − v i ) = 

1 

2 

ρa C D || v f − v i || ( v f − v i ) A i · ( v f − v i ) = 

1 

2 

ρa C D || v f − v i || 3 A i . (3.7)

Remarks: For the problems under consideration, the non-interaction assumption is quite appropriate since all of the

fragments are propagating radially outwards with the same initial velocity. Thus, the inter-fragment collisions are negligible.

This has been repeated verified by “brute-force” collision calculations using formulations found in Zohdi (2013) ; 2014a ).

We will assume that the velocity of the surrounding medium ( v f ) is given, implicitly assuming that the dynamics of the

surrounding medium are unaffected by the fragments. 1 We also remark that in the case of underwater blasts or fragments

that become porous as a result of the blast (“fluffy”), a buoyancy force would need to be included, �buoy 
i 

= ρ f 
4 
3 πR 3 

i 
b, where

b = (b x , b y , b z ) = (0 , 0 , 9 . 81) m/s 2 and ρ f is the density of the surrounding fluid. Neither of these cases are important in the

present analysis, however, we refer the reader to Zohdi (2016) . 
1 We will discuss this assumption later in the paper. 
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4. Approximate analytical solutions to special cases 

4.1. Trajectories 

If we assume that v f ≈ 0 , the differential equation for each fragment in its outward normal direction, assuming no gravity

or fluid velocity ( v f = 0 )The subscript n indicates the outward normal direction.: 

m i ̇ v in = −1 

2 

ρa C D v 2 in A i , (4.1)

where v in is the outward normal velocity, which can be written as 

˙ v in = −K i v 2 in , (4.2)

where for a sphere 

K i = 

1 

2 m i 

C D ρa A i = 

3 C D ρa 

8 ρR i 

. (4.3)

Using the chain rule 

dv in 
dt 

= 

dv in 
dr in 

dr in 
dt 

= 

dv in 
dr in 

v in = −K i v 2 in , (4.4)

which yields 

dv in 
dr in 

= −Kv in , (4.5)

and subsequently 

dv in 
v in 

= −Kdr in ⇒ 

∫ v in (t) 

v oin 

dv in 
v in 

= −
∫ r in (t) 

r oin 

Kdr in , (4.6)

where r in is the outward normal position, with solution 

v in (t) = v oin e 
−K(r in (t) −r oin ) , (4.7)

with inverse solution, for the blast radius 

L (t) = r in (t) − r oin = − 1 

K 

Ln 

(
v in (t) 

v oin 

)
= − 8 ρR i 

3 C D ρa 
Ln 

(
v in (t) 

v oin 

)
, (4.8)

where 1 
K has units of meters. This shows the explict inverse relationship between the size of the blast radius and K , which is

a measure of the drag (tending to limit the blast radius growth) and the mass (tending to increase the blast radius growth).

One can relate this directly to the energy of detonation and total mass via Eq. (3.4) , utilizing v oin = 

√ 

2 E 
M 

L (t) = r in (t) − r oin = − 8 ρR i 

3 C D ρa 
Ln 

( 

v in (t) √ 

2 E 
M 

) 

. (4.9)

Remark: One could directly integrate Eq. (4.2) in time to yield 

v in (t ) = 

v oin 

Kt v oin + 1 

= 

√ 

2 E 
M 

Kt 
√ 

2 E 
M 

+ 1 

(4.10)

and 

r in (t) = r oin + 

1 

K i 

Ln (K i t i v oin + 1) = r oin + 

1 

K i 

Ln 

( 

K i t i 

√ 

2 E 

M 

+ 1 

) 

. (4.11)

One can also invert Eq. (4.11) to yield an expression for the time it takes to achieve a certain blast radius: 

t ∗i = 

e K i (r in (t) −r oin ) − 1 √ 

2 E 
. (4.12)
K i M 
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4.2. Atmospheric heating 

The atmospheric heating of the material is given by Eq. (3.7) which, in the general case, can be integrated to yield: 

θ (t) = θ (t = 0) + 

1 

m i C i 

∫ t 

0 

�drag 
i 

· ( v f − v i ) dt, (4.13) 

where ∫ t 

0 

�drag 
i 

· ( v f − v i ) dt = 

∫ t 

0 

1 

2 

ρa C D || v f − v i || 3 A i dt, (4.14) 

which shows a cubic-dependency on the relative velocity. In the special case considered in the previous section, 

|| v f − v i || 3 = 

( v oin 

K i tv oin + 1 

)3 

= 

( √ 

2 E 
M 

K i t 
√ 

2 E 
M 

+ 1 

) 3 

, (4.15) 

or, explicitly, 

θi (t) = θi (t = 0) + 

1 

m i C i 

∫ t 

0 

1 

2 

ρa C D 

( √ 

2 E 
M 

K i t 
√ 

2 E 
M 

+ 1 

) 3 

A i dt. (4.16) 

5. More accurate resolution of drag 

To more accurately account for the effects of drag, one must take into account that the empirical drag coefficient varies

with Reynolds number. For example, consider the following piecewise relation ( Chow, 1980 ): 

• For 0 < Re ≤ 1, C D = 

24 
Re , 

• For 1 < Re ≤ 400, C D = 

24 
Re 0 . 646 , 

• For 400 < Re ≤ 3 × 10 5 , C D = 0 . 5 , 

• For 3 × 10 5 < Re ≤ 2 × 10 6 , C D = 0 . 0 0 0366 Re 0 . 4275 , 

• For 2 × 10 6 < Re < ∞ , C D = 0 . 18 , 

where the local Reynolds number for a fragment is Re = 

def 2 Rρa || v f −v i || 
μ f 

and μf is the fluid viscosity. 2 We note that in the zero

Reynolds number limit the drag is Stokesian. Using the piecewise relation reduces the drag at the lower Reynolds number

regimes, thus producing a larger blast radius than a constant large drag coefficient. The governing equation, when include

gravity is included, is 

m i ̇ v i = �drag 
i 

+ �gra v 
i 

= 

1 

2 

ρa C D || v f − v i || ( v f − v i ) A i + m i g, (5.1)

which we must integrate the governing equations numerically 

v i (t + �t) = v i (t) + 

1 

m 

∫ t+�t 

t 

(�drag 
i 

+ �gra v 
i 

) dt 

≈ v i (t) + 

�t 

m i 

(
�drag 

i 
(t) + �gra v 

i 
(t) 

)
. (5.2) 

We can subsequently integrate for the temperature 

θi (t + �t) = θi (t) + 

1 

m i C i 

∫ t+�t 

t 

1 

2 

ρa C D || v f − v i || 3 A dt = θi (t) + 

�tρa C D A i 

2 m i C i 
|| v f − v i (t) || 3 . (5.3)

Remark: The piecewise drag law of Chow (1980) is a mathematical description for the Reynolds number over a wide

range and is a curve-fit of extensive data from Schlichtling (1979) . As observed in the experimental data, the mathematical

function exhibits a discontinuity at Re = 3 × 10 5 , although in an explosion the time a fragment resides in this Reynolds

number is negligible. 

6. Numerical examples 

In order to illustrate the model, the following simulation parameters were chosen: 

• Total simulation duration, 20 s, 

• The time step size, �t = 10 −4 s, 
2 The viscosity coefficient for air is μ f = 0 . 0 0 0 018 Pa/s. 
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• Launch velocity, v (t = 0) = (0 , 0 , 0) m/s (no obstructions), 

• Detonation energy, E = 3 . 61 kg TNT or E = 16 . 66 × 10 6 J (TNT = 4.6 × 10 6 J/kg), 

• Density of air, ρa = 1 . 225 kg/m 

3 
, 

• Number of fragments, N = 10 0 0 , 

• Density of detonation material, ρ = 10 0 0 kg/m 

3 
, 

• Total mass, M = 

∑ N 
i =1 m i = 26 . 15 kg and 

• Heat capacity of C = 1900 J / K − kg . 

The fragment sizes were randomly generated and scaled so that the total mass in the system remains constant and ere

packed between the inner and outer shell cited above. We assumed that the TNT was converted into an energy impulse to

the mass of the gelatin. An extremely small (relative to the total simulation time) time-step size of �t = 10 −4 s was used.

Further reductions of the time-step size produced no noticeable changes in the results, thus the solutions generated can be

considered to have negligible numerical error. The simulations took under 1 min on a standard laptop. Fig. 5 illustrates the

results for the parameters above. With the chosen parameters, with ground constraints (starting at 1 m high): 

• Case 1: With uniform sized fragment masses, m i = M/N with detonation energy, E = 3 . 6 kg TNT E = 16 . 66 × 10 6 J, with

mass of 26.15 kg yielded a maximum blast radius of 596.278 m (farthest traveling object) and a mean temperature of

θ = 174 . 87 K . However, as Fig. 5 clearly indicates material at the core that hits the ground has minimal temperature rise

near the blast. The maximum temperature is approximate 615 K. 

• Case 2: With random sized fragment masses, m i = (M/N)(1 + A i ) , where −0 . 95 ≤ A i ≤ 0 . 95 , with detonation energy, E =
3 . 6 kg TNT E = 16 . 66 × 10 6 J, with mass of 26.15 kg yielded a maximum blast radius of 784.920 m (farthest traveling

object) and a mean temperature of θ = 174 . 34 K . However, as Fig. 6 clearly indicates material at the core that hits the

ground has minimal temperature rise near the blast. The maximum temperature is approximate 615 K. 

The randomized fragment case matched quite closely with the experiments in terms of the blast radius. We clearly see

that the fragments that travel further, they are heated more. The fragments that stop closer have been heated less and

potentially are still contaminants , i.e. the material has not been heated sufficiently, and the location in which it lands can

be considered as “contaminated/hazardous”. We note that in the descending phase of the trajectory, the fragments nearly

achieve a so-called settling steady-state velocity, v tm 

(when 

˙ v = 0 ), given by assuming a purely vertical trajectory drop 

m ̇

 v = m g + m a b + 

1 

2 

ρa AC D v || v || ⇒ 0 = −mg + m a g + 

1 

2 

ρa AC D v 2 tm 

⇒ v tm 

= 

√ 

2(m − m a ) g 

ρa C D A 

, (6.1)

where an implicit equation for the settling velocity arises due to the drag coefficient’s dependency on C D ( v ). 

Remark: In the low velocity (low Reynolds number) limit a Stokesian model is most appropriate, which is what the drag

law above attempts to incorporate. The drag forces are significantly smaller with a Stokesian model. Comparing a purely

Stokesian drag law, which would be valid for small fragments and laminar flow (low Reynolds number) 

�drag,Stokesian 
i 

= c( v f − v i ) = μ f 6 πR i ( v f − v i ) , (6.2)

where μf is the fluid viscosity. We observe the following: 

|| �drag,Stokesian || 
|| �drag || = 

12 μ f 

ρa C D R || v f − v i || . (6.3)

For typical parameters for air and spherical fragments (using C D = 0 . 5 , which is a mid-range value from the piecewise drag

law introduced earlier), we have 

|| �drag,Stokesian || 
|| �drag || = 

12 μ f 

ρa C D R || v f − v i || ≈
0 . 0 0 04 

R || v f − v i || , (6.4)

which indicates that for extremely small fragments and low velocities, the Stokesian model dominates, while for larger

fragments and large velocities, the phenomenological model dominates. 

7. Summary 

The comparison of the example calculation from the model and the high speed video analysis from our field tests show

the reasonableness of the model. The maximum distance for an object hurled by the blast as determined from the video

matched closely to the predicted distances for the model for randomly sized fragments (787 m versus 784.92 m, respec-

tively). A smaller radius is obtained for the case of uniform spheres (596.278 m), but this is to be expected given the

absence of larger fragments in this simulation that are less affected by drag. We attempted to scale the model down to

match smaller scale field tests, but found a limit with respect to simulation size. Smaller systems led to too few fragments

for good statistics with the model. The use of uniform or randomly sized fragments did not much affect the predicted aver-

age or maximum temperature. We expect to validate the temperature aspect of the model with thermal imaging of future

tests. 
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Fig. 5. Case 1: With uniform fragment masses, m i = M/N. Detonation energy, E = 3 . 6 kg TNT E = 16 . 66 × 10 6 J, with mass of 26.15 kg yielded a blast radius 

of 596.278 m and a mean temperature of θ = 174 . 87 K . However, as the Figure clearly indicates material at the core that hits the ground has minimal 

temperature rise near the blast. The maximum temperature is approximate 615 K. 
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Fig. 6. Case 2: With random fragment masses, m i = (M/N)(1 + A i ) , where −0 . 95 ≤ A i ≤ 0 . 95 , with detonation energy, E = 3 . 6 kg TNT E = 16 . 66 × 10 6 J, 

with mass of 26.15 kg yielded a blast radius of 784.920 m and a mean temperature of θ = 174 . 34 K . However, as Fig. 6 clearly indicates material at 

the core that hits the ground has minimal temperature rise near the blast. The maximum temperature is approximate 615 K. We note that for the case 

of random fragment masses, we obtained a larger radius for the fragment footprint. We attribute this to more massive fragments are created that are 

less affected by drag. As a result, a fraction of these fragments travel further. Although this observation could lead to the conclusion that the high drag 

experienced by aerosol particles would limit their dispersion, these can travel even longer distances. This is possible because aerosols have slow settling 

velocities and remain suspended for long periods of time. The long suspension times allow them to be carried long distances by ambient wind. 
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For general blast conditions, there can be cases where the change in the surrounding fluid’s behavior, due to the motion

of the fragments, may be important. For example, this entails numerically integrating the governing equations, which leads

to (for example using a trapezoidal rule with variable integration metric, 0 ≤ φ ≤ 1) 

v i (t + �t) = v i (t) + 

1 

m i 

∫ t+�t 

t 

( 

�gra v 
i 

+ 

K ∑ 

j =1 , j � = i 
�i j + � f luid 

i 

) 

dt 

≈ v i (t ) + 

�t φ

m i 

( 

�gra v 
i 

(t + �t ) + 

K ∑ 

j =1 , j � = i 
�i j (t + �t ) + � f luid 

i 
(t + �t ) 

) 

+ 

�t(1 − φ) 

m i 

( 

�gra v 
i 

(t) + 

N ∑ 

j =1 , j � = i 
�i j (t) + � f luid 

i 
(t) 

) 

, (7.1) 

where � f luid 
i 

represents the interaction of fragment i with the fluid and �ij ( t ) represents its interaction with the neighboring

j = 1 , 2 , . . . N fragments. The position can be computed via application of the trapezoidal rule again: 

r i (t + �t) ≈ r i (t) + �t(φv i (t + �t) + (1 − φ) v i (t)) , (7.2) 

which can be consolidated into 

r i (t + �t) = r i (t) + v i (t)�t 

+ 

φ2 (�t) 2 

m i 

( 

�gra v 
i 

(t + �t) + 

N ∑ 

j =1 , j � = i 
�i j (t + �t) + � f luid 

i 
(t + �t) 

) 

+ 

φ(1 − φ)(�t) 2 

m i 

( 

�gra v 
i 

(t) + 

K ∑ 

j =1 , j � = i 
�i j (t) + � f luid 

i 
(t) 

) 

. (7.3) 

Also, for the thermal components: 

θi (t + �t) = θi (t) + 

1 

m i C i 

∫ t+�t 

t 

1 

2 

ρa C D || v f − v i || 3 A dt (7.4) 

= θi (t ) + 

�t ρa C D A i 

2 m i C i 

(
φ|| v f (t + �t ) − v i (t + �t ) || 3 + (1 − φ) || v f (t) − v i (t) || 3 ). 

The result is a system of coupled equations between the fragments and the fluid, requiring spatio-temporal discretization

employing a possible combination of Discrete Element Methods with Finite Element or Finite Difference Methods. For ex-

ample see Avci and Wriggers (2012) , Bolintineanu et al. (2014), Leonardi, Wittel, Mendoza, and Herrmann (2014), Onate,

Celigueta, Idelsohn, Salazar, and Surez (2011), Onate et al. (2014) and Onate, Idelsohn, Celigueta, and Rossi (2008) , Zohdi

(2004) , Zohdi (2007; 2010; 2013; 2014a; 2014b) . This is currently being pursued by the authors. 

In closing, we present a simple blast dispersion model that is in qualitative agreement with field tests in terms of the

radius of the footprint of deposited material. Yet, our field tests demonstrate the presence of aerosols of concern. The authors

are also pursuing the expansion of this model using discrete particle methods to include aerosol source terms. These source

terms are applicable to atmospheric transport models that can predict long range transport. 
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