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In this paper, a mathematical model is developed to
qualitatively simulate the progressive time-evolution
of a blast from a simple firework. Estimates are
made for the blast radius that one can expect for a
given amount of detonation energy and pyrotechnic
display material. The model balances the released
energy from the initial blast pulse with the subsequent
kinetic energy and then computes the trajectory of
the material under the influence of the drag from
the surrounding air, gravity and possible buoyancy.
Under certain simplifying assumptions, the model can
be solved for analytically. The solution serves as a
guide to identifying key parameters that control the
evolving blast envelope. Three-dimensional examples
are given.

1. Introduction
Fireworks are widely used in cultural celebrations,
sporting events, political rallies, etc. The full sequence of
events for release of a cloud of packed material begins
with an initiated detonation that rapidly rips open a thin
container (typically a lightweight shell of cardboard),
which releases packed pyrotechnic powder particles
forming a cloud. Various compounds are mixed together
to produce a wide array of colours (e.g. blue (caesium,
copper), red (lithium), orange (calcium), yellow (iron),
etc.). For a history of fireworks, we refer the interested
reader to Plimpton [1], Brock [2], Russell [3], Shimanzu
[4], Werrett [5] and Kazuma [6,7].

In this paper, we are primarily interested in qualit-
atively estimating the time-evolution of the envelope
of a cloud emanating from a firework blast (figure 1).
The estimation of the time-evolution and the size of
the blast is important for both aesthetic and safety
reasons. Thus, the main objective of this study is to

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Time-lapse photo of firework material emanating from a blast. Photo available courtesy of the public domain site
http://www.photos-public-domain.com/wp-content/uploads/2011/07/. (Online version in colour.)

develop a practical qualitative model which captures the essential physics of detonation and blast
envelope growth. A schematic of the model problem is shown in figure 2. In this work, we do not
consider detailed models for the interaction between the shock wave and the packed particles
(e.g. [8–11]) nor the chemical aspects which are beyond the scope of this work.1 We make the
following simplifying assumptions:

— The fragments do not interact with one another.
— The blast fragments are all the same size, assumed spherical with radius Ri = R and

receive the same velocity pulse (denoted δv(0)), in the radial direction from the centre
of the blast upon detonation. Specifically, the velocity vector pulse is radially outward
from the centre of the sphere, co-located at the centre of mass of the pyrotechnic display
material

δvi(0) = ‖δv(0)‖
(

ri(0) − rc(0)
‖ri(0) − rc(0)‖

)
def= ‖δv(0)‖nri, (1.1)

where ri is the position vector of the ith particle, nri is the normal/radial direction and

rc(0) = 1(∑N
i=1 mi

) N∑
i=1

miri(0), (1.2)

where N is the number of particles, rc(0) is the centre of mass of the packed particles
and mi is the mass of each particle. The pulse velocities are added to the velocity vectors
immediately before the pulse (v−(0))

v+
i (0) = v−

i (0) + δvi(0). (1.3)

1See Martin-Alberca & Garcia-Ruiz [12] for an overview of common consumer fireworks, their usual chemical compositions,
and some important classification and legal regulations in Western countries.
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Figure 2. Launch and detonation of a firework.

— The magnitude of the initial velocity pulse dictates initial energy released (E), which is
assumed to be converted into kinetic energy for the pyrotechnic material at (t = 0)

E =
N∑

i=1

1
2

mi‖δv(0)‖2 ⇒ ‖δv(0)‖ =
√

2E∑N
i=1 mi

=
√

2E
M

, (1.4)

where δv(0) is the velocity of pulse imparted to a fragment in the radial direction, M is the
total pyrotechnic material mass, mi = ρi

4
3 πR3

i is mass of the individual fragments, where
ρi is the density of the fragments.

— The objects in the system are assumed to be small enough to be considered (idealized)
as particles, spherical in shape, and that the effects of their rotation with respect to their
mass centre are unimportant to their overall motion. The equation of motion for the ith
particle in the system is (with mi = m)

mv̇i = Ψ tot
i = Ψ

drag
i + Ψ

grav
i + Ψ

buoy
i , (1.5)

with initial velocity vi(0) and initial position ri(0). The gravitational force is Ψ
grav
i =

mg, where g = (gx, gy, gz) = (0, 0, −9.81) m s−2. The buoyancy force is Ψ
buoy
i = ρa

4
3 πR3b def=

mab, where b = (bx, by, bz) = (0, 0, 9.81) m s−2 and ρa is the density of air. Buoyancy can be
important because of the potentially porous nature of the fragments.

— For the drag, we will employ a general phenomenological model

Ψ
drag
i = 1

2 ρaCD‖vf − vi‖(vf − vi)A, (1.6)

where CD is the drag coefficient, A is the reference area, which for a sphere is A = πR2, ρa

is the density of the ambient fluid environment and vf is the velocity of the surrounding
medium which, in the case of interest, is air.

Remark 1.1. Later, we will assume that vf ≈ 0, implicitly assuming that the dynamics of the
surrounding medium is unimportant. However, for other applications, such as high-speed flow,
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the motion of the surrounding fluid can be important, necessitating fully coupled (two-way)
particle–fluid interaction models. This is outside the scope of the present work. Generally, this
requires the use of solid–fluid staggering-type schemes (e.g. [13–19]). This is discussed further at
the end of this paper.

Remark 1.2. For the problems under consideration, the non-interaction assumption is quite
appropriate since all of the particles are propagating radially outwards with the same initial
velocity. Thus, their mutual collisions are negligible. This was also checked against ‘brute-force’
simulations, which are beyond the scope of this paper, using formulations in Zohdi [16,17] which
take detailed collisions into account.

2. General fragment trajectories
The differential equation for each fragment in its outward normal direction is (mi = m), assuming
no gravity, buoyancy or fluid velocity (vf = 0). The subscript n indicates the outward normal
direction

mv̇in = − 1
2 ρaCDv2

inA, (2.1)

where vin is the outward normal velocity, which can be written as

v̇in = −Kv2
in, (2.2)

where for a sphere

K = 1
2m

CDρaA = 3CDρa

8ρR
. (2.3)

Using the chain rule

dvin

dt
= dvin

drin

drin

dt
= dvin

drin
vin = −Kv2

in, (2.4)

which yields

dvin

drin
= −Kvin, (2.5)

and subsequently

dvin

vin
= −K drin ⇒

∫ vin(t)

voin

dvin

vin
= −

∫ rin(t)

roin

K drin, (2.6)

where rin is the outward normal position, with solution

vin(t) = voin e−K(rin(t)−roin), (2.7)

with inverse solution, for the blast radius

L(t) = rin(t) − roin = − 1
K

Ln
(

vin(t)
voin

)
= − 8ρR

3CDρa
Ln
(

vin(t)
voin

)
, (2.8)

where 1/K has units of metres. This shows the explicit inverse relationship between the size of the
blast radius and K, which is a measure of the drag (tending to limit the blast radius growth) and
the mass (tending to increase the blast radius growth). One can relate this directly to the energy
of detonation and total mass via equation (1.4), using voin = √

2E/M

L(t) = rin(t) − roin = − 8ρR
3CDρa

Ln
(

vin(t)√
2E/M

)
. (2.9)
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Remark. One could directly integrate equation (2.2) in time to yield

vin(t) = voin

Ktvoin + 1
=

√
2E/M

Kt
√

2E/M + 1
(2.10)

and

rin(t) = roin + 1
K

Ln(Ktvoin + 1) = roin + 1
K

Ln

(
Kt

√
2E
M

+ 1

)
. (2.11)

One can also invert equation (2.11) to yield an expression for the time it takes to achieve a certain
blast radius

t = eK(rin(t)−roin) − 1
K

√
2E/M

. (2.12)

3. Hybrid drag
Generally speaking, the drag coefficient, which is an empirical parameter which attempts to
represent the action of the fluid forces on an object, is not a constant, and would vary with, for
example, the Reynolds number. In the zero Reynolds number limit the drag would be that of a
Stokesian regime. One possible way to represent the drag coefficient is with a piecewise definition,
as a function of the Reynolds number (Chow [20]):

— for 0 < Re ≤ 1, CD = 24/Re,
— for 1 < Re ≤ 400, CD = 24/Re0.646,
— for 400 < Re ≤ 3 × 105, CD = 0.5,
— for 3 × 105 < Re ≤ 2 × 106, CD = 0.000366 Re0.4275,
— for 2 × 106 < Re < ∞, CD = 0.18,

where the local Reynolds number for a particle is Re def= 2Rρa‖vf − vi‖/μf and μf is the fluid
viscosity. The viscosity coefficient for air is μf = 0.000018 Pa s−1. Using the hybrid model reduces
the drag at the lower Reynolds number regimes, thus producing a larger blast radius than a
constant large drag coefficient. However, to solve the governing equation, when include gravity
and buoyancy are included

mv̇i = Ψ
drag
i + Ψ

grav
i + Ψ

buoy
i = 1

2 ρaCD‖vf − vi‖(vf − vi)A + mg + mb, (3.1)

we integrate the governing equations numerically

vi(t + �t) = vi(t) + 1
m

∫ t+�t

t
(Ψ drag

i + Ψ
grav
i + Ψ

buoy
i ) dt

≈ vi(t) + �t
m

(Ψ drag
i (t) + Ψ

grav
i (t) + Ψ

buoy
i (t)). (3.2)

Remark. The piecewise drag law of Chow [20] is a mathematical description for the Reynolds
number over a wide range and is a curve-fit of extensive data from Schlichting [21]. As observed
in the experimental data, the mathematical function exhibits a discontinuity at Re = 3 × 105,
although in an explosion the time a particle spends at this Reynolds number is almost negligible.

4. Numerical example
In order to illustrate the model, the following simulation parameters were chosen (they are not
intended to simulate a specific firework event):

— total simulation duration, 35 s,
— time to detonation after launch, 3 s,
— the time-step size, �t = 10−4 s,
— launch velocity, v(t = 0) = (0, 0, 100) m s−1 (starting from a launch height of 1 m),
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Figure 3. From left to right and top to bottom: initial launch of packed particles (small barely visible point), and then the
progressive blast with fragments reaching a maximum height. (Online version in colour.)

— detonation energy, E = 100 000 J,
— density of air, ρa = 1.225 kg m−3,
— core inner packing shell radius (figure 2), Ro = 0.01 m (which holds the packed detonation

material),
— core outer packing shell radius (figure 2), Ro = 0.025 m (forming a shell of packed

pyrotechnic display material),
— number of fragments, N = 1000,
— density of pyrotechnic display material, ρ = 1000 kg m−3,
— total mass, M =∑N

i=1 mi = 0.5 kg,
— the fragment sizes were calculated by Ri = (M/Nρπ (4/3))1/3 and were packed between

the inner and outer shell cited above.

An extremely small (relative to the total simulation time) time-step size of �t = 10−4 s was
used. Further reductions of the time-step size produced no notable changes in the results, thus
the solutions generated can be considered to have negligible numerical error. The simulations
took under 1 min on a standard laptop. Figures 3 and 4 illustrate the results for the parameters
above. With the chosen parameters, the blast radius was approximately 110 m. We note that in the
descending phase of the trajectory, the particles nearly achieve a so-called settling steady-state
velocity, vtm (when v̇ = 0), given by assuming a purely vertical trajectory drop

mv̇ = mg + mab + 1
2
ρaACDv‖v‖ ⇒ 0

= −mg + mag + 1
2
ρaACDv2

tm ⇒ vtm =
√

2(m − ma)g
ρaCDA

, (4.1)
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Figure 4. From left to right and top to bottom: descent and settling of the fragments. (Online version in colour.)

where an implicit equation for the settling velocity arises due to the drag coefficient’s dependency
on CD(v). We note that the objective of this simulation was not to simulate any specific firework
configuration or material, but to illustrate the character of the model. For example, for the
pyrotechnic material, the density was selected simply to illustrate the model. When the blast
material is ejected, it can be quite porous, not entirely a solid. Thus using a solid density of say,
copper or iron, would be inappropriate. Thus, without further information, selecting a density of
1000 kg m−3 was a neutral option. This can easily be modified for specific cases.

Remark. In the low velocity (low Reynolds number) limit, a Stokesian model is most
appropriate, which is what the hybrid drag law attempts to incorporate. The drag forces are
significantly smaller with a Stokesian model. Comparing a purely Stokesian drag law, which
would be valid for small particles and laminar flow (low Reynolds number)

Ψ
drag,Stokesian
i = c(vf − vi) = μf6πRi(v

f − vi), (4.2)

where μf is the fluid viscosity. We observe the following:

‖Ψ drag,Stokesian‖
‖Ψ drag‖ = 12μf

ρaCDR‖vf − vi‖
. (4.3)

For typical parameters for air and spherical particles (using CD = 0.5, which is a mid-range value
from the piecewise drag law introduced earlier), we have

‖Ψ drag,Stokesian‖
‖Ψ drag‖ = 12μf

ρaCDR‖vf − vi‖
≈ 0.0004

R‖vf − vi‖
, (4.4)

which indicates that for extremely small fragments and low velocities, the Stokesian model
dominates, while for larger fragments and large velocities, the phenomenological model
dominates. The limiting Stokesian case is discussed further in the appendix.
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5. Summary
For general blast conditions, there can be cases where the change in the surrounding fluid’s
behaviour due to the motion of the particles may be important. With those cases in mind, had
the fragment non-interaction approximation not been invoked, a coupled system of equations
would arise due to the interaction between the fragments. For example, this entails numerically
integrating, in an implicit manner, the governing equations, which leads to (for example using a
trapezoidal rule with variable integration metric, 0 ≤ φ ≤ 1)

vi(t + �t) = vi(t) + 1
m

∫ t+�t

t
(Ψ grav

i +
K∑

j=1,j�=i

Ψ ij + Ψ fluid
i ) dt

≈ vi(t) + �tφ
m

⎛
⎝Ψ

grav
i (t + �t) +

K∑
j=1,j�=i

Ψ ij(t + �t) + Ψ fluid
i (t + �t)

⎞
⎠

+ �t(1 − φ)
m

⎛
⎝Ψ

grav
i (t) +

K∑
j=1,j�=i

Ψ ij(t) + Ψ fluid
i (t)

⎞
⎠ , (5.1)

where Ψ fluid
i represents the interaction of fragment i with the fluid and Ψ ij(t) represents its

interaction with the neighbouring j = 1, 2, . . . K fragments. The position can be computed via
application of the trapezoidal rule again:

ri(t + �t) ≈ ri(t) + �t(φvi(t + �t) + (1 − φ)vi(t)), (5.2)

which can be consolidated into

ri(t + �t) = ri(t) + vi(t)�t

+ φ2(�t)2

m

⎛
⎝Ψ

grav
i (t + �t) +

K∑
j=1,j�=i

Ψ ij(t + �t) + Ψ fluid
i (t + �t)

⎞
⎠

+ φ(1 − φ)(�t)2

m

⎛
⎝Ψ

grav
i (t) +

K∑
j=1,j�=i

Ψ ij(t) + Ψ fluid
i (t)

⎞
⎠ . (5.3)

This yields a coupled system of equations for the interaction between the fragments and the
fluid, which would necessitate spatio-temporal discretization for example using finite-element,
finite difference, finite volume or discrete element methods, such as those found in Onate et al.
[22,23,25], Avci & Wriggers [19], Leonardi et al. [24], Bolintineanu et al. [26] and Zohdi [13–18].
Furthermore, in order to obtain more accurate initial conditions for the system, advanced models
would also involve detailed modelling of the initial packing of the material [27,28], and the
evolution of heat and the mechanics of the surrounding fluid environment. Such systems are quite
complex. Thus, in order to qualitatively understand such systems a priori, the results presented
in this paper are useful. Summarizing, in the absence or gravity of buoyancy, one obtains quite
simple relations for the velocity of the fragments (under the constant drag coefficient assumption)

vin(t) = voin e−K(rin(t)−roin) =
√

2E
M

e−(3CDρa/8ρR)(rin(t)−roin), (5.4)

with inverse solution, for the blast radius

L(t) = rin(t) − roin = − 8ρR
3CDρa

Ln
(

vin

voin

)
= − 8ρR

3CDρa
Ln
(

vin√
2E/M

)
. (5.5)

Under the non-interaction approximation made earlier, the expressions above can be used for
each fragment to compute the trajectory and provide a useful guide for more detailed studies,
which are being currently pursued by the author.
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Appendix A. Stokesian model
The differential equation for each fragment is (mi = m)

m
dvi

dt
= c(vf − vi) + mg + mab (A 1)

and can be solved analytically in the normal direction (nri) to yield

vin(t) =
(
vin(0) − v

f
n − m

c

(
gn + ma

m
bn

))
e−(c/m)t + v

f
n + m

c

(
gn + ma

m
bn

)
. (A 2)

The position in the normal direction is

rin(t) = rin(0) + Ain
m
c

(1 − e−(c/m)t) + Bint, (A 3)

where Ain = vin(0) − v
f
in − (m/c)(gn + (ma/m)bn) and Bin = v

f
in + (m/c)(gn + (ma/m)bn). We note

that
m
c

= 2R2ρ

9μf
. (A 4)

(a) Gravity and buoyancy-free case
In the normal direction, with no gravity and buoyancy, this collapses to a particularly simple
expression for the velocity of each fragment

vin(t) = vin(0) e−(c/m)t (A 5)

and for the position, we have

rin(t) = rin(0) + vin(0)
m
c

(1 − e−(c/m)t). (A 6)

(b) Blast envelope radius
To extract the ‘pure’ blast envelope radius, ignoring the launch velocity, thus vin(0) = ‖δv(0)‖

vin(t) = vin(0) e−(c/m)t = ‖δvin(0)‖ e−(c/m)t (A 7)

and for the position, we have

rin(t) = rin(0) + vin(0)
m
c

(1 − e−(c/m)t) = rin(0) + ‖δvin(0)‖m
c

(1 − e−(c/m)t). (A 8)

Using equation (1.4) yields

vin(t) =
(√

2E
M

)
e−(9μf/2R2ρ)t (A 9)

and

rin(t) = rin(0) +
(√

2E
M

2ρR2

9μf

)
(1 − e−(9μf/2R2ρ)t). (A 10)

We define the blast radius

L(t) def= rin(t) − rin(0) =
(√

2E
M

2ρR2

9μf

)
(1 − e−(9μf/2R2ρ)t). (A 11)

The maximum radius (t = ∞) is

L(t = ∞) =
(√

2E
M

2ρR2

9μf

)
. (A 12)
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The ratio of the radius at any given time to the maximum is

L(t)
L∞

= 1 − e−(9μf/2R2ρ)t. (A 13)

To determine the time for the blast radius to achieve a certain size, L(t∗) =L∗, we may solve for
the time from the above

t∗ = −2ρR2

9μf
Ln
(L(∞) − L∗

L(∞)

)
. (A 14)

The key observations are the exponential (decay-type) growth of the cloud, controlled by the
amount of energy in the detonation and the ratio of the surrounding damping and the fragment
masses. The growth of the blast sphere is exponential and is controlled by the ratio of the inertial
and drag forces, 2R2ρ/9μf. The size of the blast sphere is proportional to the square of the size
of the particles, the square root of the stored detonation energy, inversely proportional to the
square-root of the mass and inversely proportional to the viscosity of the atmosphere. As for the
model used in the body of the paper, we note that in the descending phase of the trajectory, for a
Stokesian regime, the particles nearly achieve a so-called settling steady-state velocity, vtm (when
v̇ = 0), given by assuming a purely vertical trajectory drop

mv̇ = mg + mab + μf6πR2v ⇒ 0

= −mg + mag + μf6πR2vtm ⇒ vtm = 2
9

(ρ − ρa)
μf

gR2. (A 15)
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